Access the full text.
Sign up today, get DeepDyve free for 14 days.
[We give an overview of recent progress around a problem introduced by Elekes and Rónyai. The prototype problem is to show that a polynomial \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f\in \mathbb R[x,y]$$\end{document} has a large image on a Cartesian product \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A\times B\subset \mathbb R^2$$\end{document}, unless f has a group-related special form. We discuss this problem and a number of variants and generalizations. This includes the Elekes-Szabó problem, which generalizes the Elekes-Rónyai problem to a question about an upper bound on the intersection of an algebraic surface with a Cartesian product, and curve variants, where we ask the same questions for Cartesian products of finite subsets of algebraic curves. These problems lie at the crossroads of combinatorics, algebra, and geometry: They ask combinatorial questions about algebraic objects, whose answers turn out to have applications to geometric questions involving basic objects like distances, lines, and circles, as well as to sum-product-type questions from additive combinatorics. As part of a recent surge of algebraic techniques in combinatorial geometry, a number of quantitative and qualitative steps have been made within this framework. Nevertheless, many tantalizing open questions remain.]
Published: Nov 3, 2018
Keywords: Algebraic Curve; Distinct Distance Problem; Schwartz-Zippel Lemma; Collinear Triples; Sharir
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.