Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

New Trends in Intuitive GeometryThe Geometry of Abrasion

New Trends in Intuitive Geometry: The Geometry of Abrasion [Our goal is to narrow the gap between the mathematical theory of abrasion and geological data. To this end, we first review existing mean field geometrical theory for the abrasion of a single particle under collisions and extend it to include mutual abrasion of two particles and also frictional abrasion. Next we review the heuristically simplified box model [8], operating with ordinary differential equations, which also describes mutual abrasion and friction. We extend the box model to include an independent physical equation for the evolution of mass and volume. We introduce volume weight functions as multipliers of the geometric equations and use these multipliers to enforce physical volume evolution in the unified equations. The latter predict, in accordance with Sternberg’s Law, exponential decay for volume evolution so the extended box model appears to be suitable to match and predict field data. The box model is also suitable for tracking the collective abrasion of large particle populations. The mutual abrasion of identical particles, modeled by the self-dual flows, plays a key role in explaining geological scenarios. We give stability criteria for self-dual flows in terms of the parameters of the physical volume evolution models and show that under reasonable assumptions these criteria can be met by physical systems.] http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png

New Trends in Intuitive GeometryThe Geometry of Abrasion

Part of the Bolyai Society Mathematical Studies Book Series (volume 27)
Editors: Ambrus, Gergely; Bárány, Imre; Böröczky, Károly J.; Fejes Tóth, Gábor ; Pach, János

Loading next page...
 
/lp/springer-journals/new-trends-in-intuitive-geometry-the-geometry-of-abrasion-0xHmDmTrCK
Publisher
Springer Berlin Heidelberg
Copyright
© János Bolyai Mathematical Society and Springer-Verlag GmbH Germany, part of Springer Nature 2018. Corrected Publication 2018
ISBN
978-3-662-57412-6
Pages
125 –153
DOI
10.1007/978-3-662-57413-3_6
Publisher site
See Chapter on Publisher Site

Abstract

[Our goal is to narrow the gap between the mathematical theory of abrasion and geological data. To this end, we first review existing mean field geometrical theory for the abrasion of a single particle under collisions and extend it to include mutual abrasion of two particles and also frictional abrasion. Next we review the heuristically simplified box model [8], operating with ordinary differential equations, which also describes mutual abrasion and friction. We extend the box model to include an independent physical equation for the evolution of mass and volume. We introduce volume weight functions as multipliers of the geometric equations and use these multipliers to enforce physical volume evolution in the unified equations. The latter predict, in accordance with Sternberg’s Law, exponential decay for volume evolution so the extended box model appears to be suitable to match and predict field data. The box model is also suitable for tracking the collective abrasion of large particle populations. The mutual abrasion of identical particles, modeled by the self-dual flows, plays a key role in explaining geological scenarios. We give stability criteria for self-dual flows in terms of the parameters of the physical volume evolution models and show that under reasonable assumptions these criteria can be met by physical systems.]

Published: Nov 3, 2018

There are no references for this article.