Access the full text.
Sign up today, get DeepDyve free for 14 days.
The structural response modification factor (R) is a parameter, which determines the performance of a structure in a nonlinear range during strong earthquakes. Hence, in the previous research, the effect of viscose dampers on the coefficient of structural modification has been measured. In this research, the effect of friction dampers on the R factor in steel structures with regard to traditional and advanced methods of nonlinear static analysis has been investigated. With the development of the application of pushover analysis, in recent years, several advanced pushover methods have been proposed to consider the realistic behaviors of structures, including the effect of higher modes or the effect of changes in the structural modal characteristics during the analysis owing to the yielding of members. Therefore, the adaptive pushover analysis was used to consider the impact of near- and far-field records. In general, the factors affecting the R factor are distinguishable from the following two perspectives: strength and ductility. Structural analysis has been carried out by the finite element method and by taking into account the nonlinear method of the members in an extended fiber section method, with and without frictional damper in different places and positions. The results show that in particular the R factor has increased 52.45% on average, under different conditions. Therefore, using the results of numerous cases and the application of dampers with different slip loads and the variable number of dampers in each story, a new equation (Rd) is proposed for the R factor of structures along with a friction damper (slip force, number of story, and bay of equipped with damper).
"Asian Journal of Civil Engineering" – Springer Journals
Published: Nov 11, 2020
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.