Access the full text.
Sign up today, get DeepDyve free for 14 days.
In this paper, the approximate solutions for two different type of two-dimensional nonlinear integral equations: two-dimensional nonlinear Volterra-Fredholm integral equations and the nonlinear mixed Volterra-Fredholm integral equations are obtained using the Laguerre wavelet method. To do this, these two-dimensional nonlinear integral equations are transformed into a system of nonlinear algebraic equations in matrix form. By solving these systems, unknown coefficients are obtained. Also, some theorems are proved for convergence analysis. Some numerical examples are presented and results are compared with the analytical solution to demonstrate the validity and applicability of the proposed method.
Applied Mathematics-A Journal of Chinese Universities – Springer Journals
Published: Mar 10, 2021
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.