Access the full text.
Sign up today, get DeepDyve free for 14 days.
S. Press, K. Shigemasu (1989)
Bayesian Inference in Factor Analysis
L. Simar (1996)
Discussion on 'Testing for Mixtures : A Bayesian Entropic Approach' by Mengersen, K.L. and Ch. Robert
D. Sturm, D. Sturm, B. Orr, U. Toprak, V. Hovestadt, David Jones, D. Capper, D. Capper, M. Sill, I. Buchhalter, P. Northcott, Irina Leis, M. Ryzhova, C. Koelsche, C. Koelsche, E. Pfaff, E. Pfaff, Sariah Allen, G. Balasubramanian, B. Worst, B. Worst, K. Pajtler, S. Brabetz, Pascal Johann, Pascal Johann, F. Sahm, F. Sahm, J. Reimand, J. Reimand, A. Mackay, Diana Carvalho, M. Remke, J. Phillips, A. Perry, Cynthia Cowdrey, R. Drissi, M. Fouladi, F. Giangaspero, M. Łastowska, W. Grajkowska, W. Scheurlen, T. Pietsch, C. Hagel, J. Gojo, D. Lötsch, W. Berger, I. Slavc, C. Haberler, A. Jouvet, S. Holm, S. Hofer, M. Prinz, C. Keohane, I. Fried, C. Mawrin, D. Scheie, B. Mobley, M. Schniederjan, M. Santi, A. Buccoliero, S. Dahiya, C. Kramm, A. Bueren, K. Hoff, S. Rutkowski, C. Herold‐Mende, M. Frühwald, T. Milde, T. Milde, M. Hasselblatt, Pieter Wesseling, Pieter Wesseling, J. Rössler, U. Schüller, M. Ebinger, J. Schittenhelm, S. Frank, R. Grobholz, I. Vajtai, V. Hans, R. Schneppenheim, K. Zitterbart, V. Collins, E. Aronica, P. Varlet, S. Puget, C. Dufour, J. Grill, D. Figarella-Branger, M. Wolter, M. Schuhmann, T. Shalaby, M. Grotzer, T. Meter, C. Monoranu, J. Felsberg, G. Reifenberger, M. Snuderl, Lynn Forrester, J. Koster, R. Versteeg, R. Volckmann, P. Sluis, S. Wolf, T. Mikkelsen, A. Gajjar, K. Aldape, A. Moore, Michael Taylor, Chris Jones, N. Jabado, M. Karajannis, R. Eils, M. Schlesner, P. Lichter, A. Deimling, A. Deimling, Stefan Pfister, Stefan Pfister, D. Ellison, A. Korshunov, A. Korshunov, M. Kool (2016)
New Brain Tumor Entities Emerge from Molecular Classification of CNS-PNETsCell, 164
H. Lopes, M. West (2004)
BAYESIAN MODEL ASSESSMENT IN FACTOR ANALYSIS
J. Diebolt, C. Robert (1994)
Estimation of Finite Mixture Distributions Through Bayesian SamplingJournal of the royal statistical society series b-methodological, 56
G. McLachlan, D. Peel (2000)
Mixtures of Factor Analyzers
W. Gilks, S. Richardson, D. Spiegelhalter (1995)
Bayesian model comparison via jump diffusions
Panagiotis Papastamoulis (2017)
Overfitting Bayesian mixtures of factor analyzers with an unknown number of componentsComput. Stat. Data Anal., 124
G. Schwarz (1978)
Estimating the Dimension of a ModelAnnals of Statistics, 6
Michael Tipping, Charles Bishop (1999)
Mixtures of Probabilistic Principal Component AnalyzersNeural Computation, 11
P. McNicholas (2016)
Model-Based ClusteringJournal of Classification, 33
Zoubin Ghahramani, Geoffrey Hinton (1996)
The EM algorithm for mixtures of factor analyzers
M. Cugmas, A. Ferligoj (2015)
On comparing partitionsInternational Federation of Classification Societies
Dootika Vats, James Flegal, Galin Jones (2015)
Multivariate output analysis for Markov chain Monte CarloBiometrika
M. Rodríguez-Paredes, M. Esteller (2011)
Cancer epigenetics reaches mainstream oncologyNature Medicine
M. Forina, C. Armanino, S. Lanteri, E. Tiscornia (1983)
Classification of olive oils from their fatty acid composition
B. Vandeginste (1990)
PARVUS: An extendable package of programs for data exploration, classification and correlation, M. Forina, R. Leardi, C. Armanino and S. Lanteri, Elsevier, Amsterdam, 1988, Price: US $645 ISBN 0‐444‐43012‐1Journal of Chemometrics, 4
K. Hoadley, C. Yau, T. Hinoue, D. Wolf, A. Lazar, E. Drill, R. Shen, Alison Taylor, A. Cherniack, V. Thorsson, R. Akbani, R. Bowlby, Christopher Wong, M. Wiznerowicz, F. Sánchez-Vega, A. Robertson, B. Schneider, M. Lawrence, H. Noushmehr, T. Malta, Joshua Stuart, C. Benz, P. Laird (2018)
Cell-of-Origin Patterns Dominate the Molecular Classification of 10,000 Tumors from 33 Types of CancerCell, 173
M. Forina, R. Leardi, C. Armanino, S. Lanteri (1988)
PARVUS: An Extendable Package of Programs for Data Exploration
A. Fearnside (2007)
Bayesian analysis of finite mixture distributions using the allocation sampler
Antti Larjo, H. Lähdesmäki (2015)
Using multi-step proposal distribution for improved MCMC convergence in Bayesian network structure learningEURASIP Journal on Bioinformatics and Systems Biology, 2015
P. McNicholas, T. Murphy (2008)
Parsimonious Gaussian mixture modelsStatistics and Computing, 18
J. Rousseau, K. Mengersen (2011)
Asymptotic behaviour of the posterior distribution in overfitted mixture modelsJournal of the Royal Statistical Society: Series B (Statistical Methodology), 73
Ernest Fokoue, D. Titterington (2004)
Mixtures of Factor Analysers. Bayesian Estimation and Inference by Stochastic SimulationMachine Learning, 50
D. Capper, David Jones, M. Sill, V. Hovestadt, D. Schrimpf, D. Sturm, C. Koelsche, F. Sahm, L. Chavez, D. Reuss, A. Kratz, A. Wefers, Kristin Huang, K. Pajtler, L. Schweizer, D. Stichel, A. Olar, Nils Engel, K. Lindenberg, P. Harter, Anne Braczynski, K. Plate, H. Dohmen, B. Garvalov, R. Coras, A. Hölsken, E. Hewer, M. Bewerunge-Hudler, M. Schick, R. Fischer, R. Beschorner, J. Schittenhelm, O. Staszewski, K. Wani, P. Varlet, M. Pages, P. Temming, D. Lohmann, F. Selt, H. Witt, T. Milde, O. Witt, E. Aronica, F. Giangaspero, E. Rushing, W. Scheurlen, C. Geisenberger, F. Rodriguez, A. Becker, M. Preusser, C. Haberler, R. Bjerkvig, J. Cryan, M. Farrell, M. Deckert, J. Hench, S. Frank, J. Serrano, Kasthuri Kannan, A. Tsirigos, W. Brück, S. Hofer, S. Brehmer, M. Seiz-Rosenhagen, D. Hänggi, V. Hans, S. Rozsnoki, J. Hansford, P. Kohlhof, B. Kristensen, M. Lechner, Beatriz Lopes, C. Mawrin, R. Ketter, A. Kulozik, Z. Khatib, F. Heppner, A. Koch, A. Jouvet, C. Keohane, H. Mühleisen, W. Müller, U. Pohl, M. Prinz, A. Benner, M. Zapatka, N. Gottardo, P. Driever, C. Kramm, H. Müller, S. Rutkowski, K. Hoff, M. Frühwald, A. Gnekow, G. Fleischhack, S. Tippelt, G. Calaminus, C. Monoranu, A. Perry, Chris Jones, T. Jacques, B. Radlwimmer, M. Gessi, T. Pietsch, J. Schramm, G. Schackert, M. Westphal, G. Reifenberger, P. Wesseling, M. Weller, V. Collins, I. Blümcke, M. Bendszus, J. Debus, A. Huang, N. Jabado, P. Northcott, W. Paulus, A. Gajjar, G. Robinson, Michael Taylor, Z. Jaunmuktane, M. Ryzhova, M. Platten, A. Unterberg, W. Wick, M. Karajannis, M. Mittelbronn, T. Acker, C. Hartmann, K. Aldape, U. Schüller, R. Buslei, P. Lichter, M. Kool, C. Herold‐Mende, D. Ellison, M. Hasselblatt, M. Snuderl, S. Brandner, A. Korshunov, A. Deimling, S. Pfister (2018)
DNA methylation-based classification of central nervous system tumoursNature, 555
Panagiotis Papastamoulis (2020)
Overfitting Bayesian Mixtures of Factor Analyzers with Parsimonious Covariance and Unknown Number of Components [R package fabMix version 5.0]
(2020)
bpgmm: Bayesian model selection approach for parsimonious Gaussian mixture models. URL https://CRAN.R-project.org/package=bpgmm. R package version 1.0.7
L. Hubert, P. Arabie (1985)
Comparing partitionsJournal of Classification, 2
G. McLachlan, D. Peel, Richard Bean (2003)
Modelling high-dimensional data by mixtures of factor analyzersComput. Stat. Data Anal., 41
K. Roeder, L. Wasserman (1997)
Practical Bayesian Density Estimation Using Mixtures of NormalsJournal of the American Statistical Association, 92
A. Utsugi, T. Kumagai (2001)
Bayesian Analysis of Mixtures of Factor AnalyzersNeural Computation, 13
X. Meng, D. Dyk (1997)
The EM Algorithm—an Old Folk‐song Sung to a Fast New TuneJournal of the Royal Statistical Society: Series B (Statistical Methodology), 59
P. McNicholas, Aisha Elsherbiny, Aaron McDaid, Brendan Murphy (2019)
Parsimonious Gaussian Mixture Models [R package pgmm version 1.2.4]
S. Richardson, P. Green (1997)
On Bayesian Analysis of Mixtures with an Unknown Number of Components (with discussion)Journal of the Royal Statistical Society: Series B (Statistical Methodology), 59
M Forina, R Leardi, C Armanino, S Lanteri, P Conti, P Princi (1988)
PARVUS: An extendable package of programs for data exploration, classification and correlationJournal of Chemometrics, 4
Keefe Murphy, C. Viroli, I. Gormley (2017)
Infinite Mixtures of Infinite Factor AnalysersBayesian Analysis
M. Escobar, M. West (1995)
Bayesian Density Estimation and Inference Using MixturesJournal of the American Statistical Association, 90
Bruce Lindsay, G. McLachlan, K. Basford, Marcel Dekker (1989)
Mixture Models: Inference and Applications to Clustering.Journal of the American Statistical Association, 84
Catherine Blake (1998)
UCI Repository of machine learning databases
Cluster analysis is the task of grouping a set of objects in such a way that objects in the same cluster are similar to each other. It is widely used in many fields including machine learning, bioinformatics, and computer graphics. In all of these applications, the partition is an inference goal, along with the number of clusters and their distinguishing characteristics. Mixtures of factor analyzers is a special case of model-based clustering which assumes the variance of each cluster comes from a factor analysis model. It simplifies the Gaussian mixture model through parameter dimension reduction and conceptually represents the variables as coming from a lower dimensional subspace where the clusters are separate. In this paper, we introduce a new RJMCMC (reversible-jump Markov chain Monte Carlo) inferential procedure for the family of constrained MFA models.The three goals of inference here are the partition of the objects, estimation of the number of clusters, and identification and estimation of the covariance structure of the clusters; each therefore has posterior distributions. RJMCMC is the major sampling tool, which allows the dimension of the parameters to be estimated. We present simulations comparing the estimation of the clustering parameters and the partition between this inferential technique and previous methods. Finally, we illustrate these new methods with a dataset of DNA methylation measures for subjects with different brain tumor types. Our method uses four latent factors to correctly discover the five brain tumor types without assuming a constant variance structure and it classifies subjects with an excellent classification performance.
Journal of Classification – Springer Journals
Published: Oct 1, 2021
Keywords: Mixture models; Factor analysis; Cluster analysis; Model-based clustering; RJMCMC; Bayesian clustering
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.