Access the full text.
Sign up today, get DeepDyve free for 14 days.
Persistence diagrams are efficient descriptors of the topology of a point cloud. As they do not naturally belong to a Hilbert space, standard statistical methods cannot be directly applied to them. Instead, feature maps (or representations) are commonly used for the analysis. A large class of feature maps, which we call linear, depends on some weight functions, the choice of which is a critical issue. An important criterion to choose a weight function is to ensure stability of the feature maps with respect to Wasserstein distances on diagrams. We improve known results on the stability of such maps, and extend it to general weight functions. We also address the choice of the weight function by considering an asymptotic setting; assume that $${\mathbb {X}}_n$$ X n is an i.i.d. sample from a density on $$[0,1]^d$$ [ 0 , 1 ] d . For the Čech and Rips filtrations, we characterize the weight functions for which the corresponding feature maps converge as n approaches infinity, and by doing so, we prove laws of large numbers for the total persistences of such diagrams. Those two approaches (stability and convergence) lead to the same simple heuristic for tuning weight functions: if the data lies near a d-dimensional manifold, then a sensible choice of weight function is the persistence to the power $$\alpha $$ α with $$\alpha \ge d$$ α ≥ d .
Journal of Applied and Computational Topology – Springer Journals
Published: Aug 7, 2019
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.