Access the full text.
Sign up today, get DeepDyve free for 14 days.
The persistent Betti numbers are used in topological data analysis (TDA) to infer the scales at which topological features appear and disappear in the filtration of a topological space. Understanding the statistical foundations of these descriptors, and their corresponding barcodes, is thus an important problem that has received a significant amount of attention. There are, however, many situations for which it is natural to simultaneously consider multiple filtration parameters, e.g. when a point cloud comes equipped with additional measurements taken at the locations of the data. Multiparameter persistent homology (MPH) was introduced to accommodate such multifiltrations, and it has become one of the most active areas of research within TDA, with exciting progress on multiple fronts. The present work offers a first step towards a rigorous statistical foundation of MPH. Notably, we establish the strong consistency and asymptotic normality of the multiparameter persistent Betti numbers in growing domains. Our asymptotic results are established for a general framework encompassing both the marked Čech bifiltration, as well as the multicover bifiltration constructed on the null model of an independently marked Poisson point process. In a simulation study, we explain how the asymptotic normality can be used to derive tests for the goodness of fit. The statistical power of such tests is illustrated through different alternatives exhibiting more clustering, or more repulsion than the null model.
Journal of Applied and Computational Topology – Springer Journals
Published: Dec 22, 2022
Keywords: Topological data analysis; Multiparameter persistent homology; Goodness-of-fit tests; Consistency; Asymptotic normality; 62R40; 55N31
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.