Access the full text.
Sign up today, get an introductory month for just $19.
F. Brackx, N. Schepper, F. Sommen (2009)
The Fourier transform in Clifford analysisAdvances in Imaging and Electron Physics, 156
(1912)
On the best approximation of continuous functions by polynomials of given degree
E. Hitzer (2016)
Space-Time Fourier Transform, Convolution and Mustard Convolution
F Brackx, N De Schepper, F Sommen (2005)
The Clifford Fourier transformJ. Fourier Anal. Appl., 6
(1991)
Clifford Algebras and Dirac Operators in Harmonic Analysis, First published
F Sommen (1983)
Hypercomplex Fourier and Laplace transforms II\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ II $$\end{document}Complex Var. Theory Appl., 1
E. Hitzer, S. Sangwine (2013)
Quaternion and Clifford Fourier Transforms and Wavelets, 27
E. Hitzer (2021)
Quaternion and Clifford Fourier Transforms
R. Daher, S. Ouadih (2018)
Some new estimates for the Helgason Fourier transform on rank 1 symmetric spacesProceedings - Mathematical Sciences, 128
E. Hitzer, J. Helmstetter, R. Abłamowicz (2012)
Square Roots of –1 in Real Clifford AlgebrasarXiv: Rings and Algebras
R. Daher, O. Tyr (2021)
Modulus of Smoothness and Theorems Concerning Approximation in the Space L 2 q,α ( R q ) with Power Weight
E. Hitzer (2013)
Introduction to Clifford's Geometric AlgebraarXiv: Rings and Algebras
(2009)
Approximation and Properties of Periodic Functions
P Lounesto (2001)
10.1017/CBO9780511526022Clifford Algebras and Spinors
E. Hitzer (2007)
Quaternion Fourier Transform on Quaternion Fields and GeneralizationsAdvances in Applied Clifford Algebras, 17
F. Sommen (1982)
Hypercomplex Fourier and Laplace transforms IIllinois Journal of Mathematics, 26
S. Platonov (2018)
Fourier–Jacobi harmonic analysis and some problems of approximation of functions on the half-axis in L2 metric: Jackson's type direct theoremsIntegral Transforms and Special Functions, 30
Сергей Платонов, S. Platonov (2014)
Fourier–Jacobi harmonic analysis and approximation of functionsIzvestiya: Mathematics, 78
E. Hitzer (2013)
The Clifford Fourier Transform in Real Clifford AlgebrasviXra
(1965)
) ( Engl . transl . of the 1 st edn . ( 1947 ) : Theory of Approximation , Ungar , New York ,
F. Sommen (1983)
Hypercomplex fourier and laplace transforms IIComplex Variables and Elliptic Equations, 1
R. Daher, O. Tyr (2021)
Modulus of Smoothness and Theorems Concerning Approximation in the Space $$L^{2}_{q,\alpha }(\mathbb {R}_{q})$$ L qMediterranean Journal of Mathematics, 18
Peter West (2017)
Clifford algebras and spinors
F. Brackx, E. Hitzer, S. Sangwine (2012)
History of quaternion and Clifford Fourier transforms and wavelets
C. Kilmister, D. Hestenes, G. Sobczyk (1984)
Clifford Algebra to Geometric CalculusThe Mathematical Gazette, 69
(1950)
Generalized modulus of continuity and best approximation in the mean
H. Bie, Yuan Xu (2010)
On the Clifford-Fourier transformarXiv: Classical Analysis and ODEs
O Tyr, R Daher, S El Ouadih, O El Fourchi (2021)
On the Jackson-type inequalities in approximation theory connected to the q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ q $$\end{document}-Dunkl operators in the weighted space Lq,α2(Rq,|x|2α+1dqx)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{2}_{q,\alpha }({\mathbb{R} }_{q},|x|^{2\alpha +1}d_{q}x)$$\end{document}Bol. Soc. Mat. Mex., 27
A. Achak, O. Ahmad, A. Belkhadir, R. Daher (2022)
Jackson Theorems for the Quaternion Linear Canonical transformAdvances in Applied Clifford Algebras, 32
S. Platonov (2009)
Bessel generalized translations and some problems of approximation theory for functions on the half-lineSiberian Mathematical Journal, 50
Dunham Jackson
Über die Genauigkeit der Annäherung stetiger Funktionen durch ganze rationale Funktionen gegebenen Grades und trigonometrische Summen gegebener Ordnung
S. ouadih, R. Daher, O. Tyr, Faouaz Saadi (2021)
Equivalence of K-functionals and moduli of smoothness generated by the Beltrami-Laplace operator on the spaces S(p,q)(σm-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek}Rendiconti del Circolo Matematico di Palermo Series 2, 71
K. Gürlebeck, K. Habetha, W. Sprößig (2007)
Holomorphic Functions in the Plane and n-dimensional Space
Youssef Haoui, S. Fahlaoui (2019)
Donoho–Stark’s Uncertainty Principles in Real Clifford AlgebrasAdvances in Applied Clifford Algebras, 29
S. Nikol, I. Ski (1975)
Approximation of Functions of Several Variables and Imbedding Theorems
E. Hitzer, B. Mawardi (2008)
Clifford Fourier Transform on Multivector Fields and Uncertainty Principles for Dimensions n = 2 (mod 4) and n = 3 (mod 4)Advances in Applied Clifford Algebras, 18
F Brackx, N De Schepper, F Sommen (2009)
The Fourier transform in Clifford analysisAdv. Imaging Electron Phys., 156
D. Hestenes, G. Sobczyk, J. Marsh (1984)
Clifford Algebra to Geometric Calculus: A Unified Language for Mathematics and Physics
F Sommen (1982)
Hypercomplex Fourier and Laplace transforms I\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ I $$\end{document}Ill. J. Math., 26
S. Ouadih, R. Daher, O. Tyr, Faouaz Saadi (2021)
Equivalence of K-functionals and moduli of smoothness generated by the Beltrami-Laplace operator on the spaces $$S^{(p,q)}(\sigma ^{m-1})$$ SRendiconti del Circolo Matematico di Palermo Series 2, 71
(2022)
On the continuity module of the sum of the series conjugate to a Fourier series. Prace Mat.-Fiz
On the Jackson - type inequalities in approximation theory connected to the q - Dunkl operators in the weighted space L 2 q , α ( R q , | x | 2 α + 1 d q x )
In this research, we look at problems in the theory of approximation of functions in real Clifford algebras. We prove analogues of direct and inverse approximation theorems in terms of best approximations of functions with bounded spectrum and the moduli of smoothness of all orders constructed by the generalized Steklov operators.
Advances in Applied Clifford Algebras – Springer Journals
Published: Feb 1, 2023
Keywords: Clifford algebras; Clifford–Fourier transform; Best approximations; Steklov operators; Bernstein’s theorem; Jackson’s theorems; Stechkin’s theorems; Modulus of smoothness; 42B10; 42A38; 43A62
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get an introductory month for just $19.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.