Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

On the Lagrangian regularity near non-transversal crossing of Lagrangian manifolds

On the Lagrangian regularity near non-transversal crossing of Lagrangian manifolds Ann. Univ. Ferrara - Sez. VII - Sc. Mat. Suppl. Vol. XLV, 197-211 (1999) On the Lagrangian Regularity Near non-Transversal Crossing of Lagrangian Manifolds. PASCAL LAUBIN (*) To tt~e memory of Lamberto Cattabriga 1. - Introduction. In [12], a class of lagrangian distributions associated to a pair of conic la- grangian submanifolds with transversal crossing is used to construct in the C~ framework a parametrix of the Cauchy problem for an operator with multiple involutive characteristics. In this paper, we review a more general construc- tion in the Co and analytic category using some ideas from second microlocal- ization. An application is given to the lagrangian properties of the solution at the transition from the shadow to the illuminated region in diffraction theory. First in the C~ framework and using the canonical invariance, we prove that the solution belongs to a class of lagrangian distributions associated to a pair of lagrangian submanifolds. As a consequence, we see that, for a conormal data, the second wave front lies in a lagrangian submanifold. We next investigate the same problem in the analytic category. Here we use the geometry of complex canonical transforms and the H~ spaces of SjSs- trand. We generalize http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png ANNALI DELL UNIVERSITA DI FERRARA Springer Journals

On the Lagrangian regularity near non-transversal crossing of Lagrangian manifolds

ANNALI DELL UNIVERSITA DI FERRARA , Volume 45 (1) – Jan 1, 1999

Loading next page...
 
/lp/springer-journals/on-the-lagrangian-regularity-near-non-transversal-crossing-of-SysS6KSNM7

References (16)

Publisher
Springer Journals
Copyright
Copyright © Università degli Studi di Ferrara 1999
ISSN
0430-3202
eISSN
1827-1510
DOI
10.1007/bf02826095
Publisher site
See Article on Publisher Site

Abstract

Ann. Univ. Ferrara - Sez. VII - Sc. Mat. Suppl. Vol. XLV, 197-211 (1999) On the Lagrangian Regularity Near non-Transversal Crossing of Lagrangian Manifolds. PASCAL LAUBIN (*) To tt~e memory of Lamberto Cattabriga 1. - Introduction. In [12], a class of lagrangian distributions associated to a pair of conic la- grangian submanifolds with transversal crossing is used to construct in the C~ framework a parametrix of the Cauchy problem for an operator with multiple involutive characteristics. In this paper, we review a more general construc- tion in the Co and analytic category using some ideas from second microlocal- ization. An application is given to the lagrangian properties of the solution at the transition from the shadow to the illuminated region in diffraction theory. First in the C~ framework and using the canonical invariance, we prove that the solution belongs to a class of lagrangian distributions associated to a pair of lagrangian submanifolds. As a consequence, we see that, for a conormal data, the second wave front lies in a lagrangian submanifold. We next investigate the same problem in the analytic category. Here we use the geometry of complex canonical transforms and the H~ spaces of SjSs- trand. We generalize

Journal

ANNALI DELL UNIVERSITA DI FERRARASpringer Journals

Published: Jan 1, 1999

Keywords: Cotangent Bundle; Principal Symbol; Lagrangian Submanifolds; Lagrangian Manifold; Microlocal Analysis

There are no references for this article.