Access the full text.
Sign up today, get DeepDyve free for 14 days.
D. Ramakrishnan, F. Shahidi (2006)
SIEGEL MODULAR FORMS OF GENUS 2 ATTACHED TO ELLIPTIC CURVESMathematical Research Letters, 14
I. Miyawaki (1992)
Numerical examples of Siegel cusp forms of degree 3 and their zeta functionsMem. Fac. Sci. Kyushu Univ. Ser. A, 46
R. Weissauer (1986)
Stabile Modulformen und Eisensteinreihen
S. Böcherer, B. Heim (2000)
L-functions on GSp2 × Gl2 of mixed weights
M. Harris (1981)
The rationality of holomorphic Eisenstein seriesInventiones mathematicae, 63
G. Shimura (1973)
Modular Forms of Half Integral Weight
T. Ikeda (2006)
Pullback of the lifting of elliptic cusp forms and Miyawakis conjectureDuke Math. J., 131
E. Doran, Ze-Li Dou, G. Gilbert, B. Heim (1999)
Pullbacks of Eisenstein series, Hecke-Jacobi theory and automorphic L-functions.
(1967)
Andrianov: Shimura’s conjecture for Siegel modular group of genus 3
S. Böcherer, B. Heim (2000)
L-functions on $GSp_2 \times Gl_2$ of mixed weightsMathematische Zeitschrift, 235
D. Ramakrishnan (2000)
Modularity of the Rankin-Selberg L-series, and multiplicity one for SL(2)Ann. Math., 152
Isao Miyawaki (1992)
NUMERICAL EXAMPLES OF SIEGEL CUSP FORMS OF DEGREEE 3 AND THEIR ZETA-FUNCTIONSMemoirs of The Faculty of Science, Kyushu University. Series A, Mathematics, 46
P. Deligne (1979)
Valeurs de fonctions L et périodes d’intégrales, 33
Paul Garrett (1987)
Decomposition of Eisenstein series: Rankin triple productsAnnals of Mathematics, 125
S. Böcherer (1985)
Über Funktionalgleichungen automorpher L-Funktionen zur Siegelschen Modulgruppe.Journal für die reine und angewandte Mathematik (Crelles Journal), 1985
N. Kurokawa (1978)
Examples of eigenvalues of Hecke operators on Siegel cusp forms of degree twoInventiones mathematicae, 49
A. Andrianov (1974)
EULER PRODUCTS CORRESPONDING TO SIEGEL MODULAR FORMS OF GENUS 2Russian Mathematical Surveys, 29
T. Ikeda (2006)
Pullback of the lifting of elliptic cusp forms and Miyawaki's conjectureDuke Mathematical Journal, 131
T. Ikeda (2001)
On the lifting of elliptic cusp forms to Siegel cusp forms of degree 2nAnnals of Mathematics, 154
D. Ramakrishnan (2000)
Correction: "Modularity of the Rankin-Selberg $L$-series, and multiplicity one for SL(2)"Annals of Mathematics, 152
H. Yoshida (2001)
Motives and Siegel modular formsAmerican Journal of Mathematics, 123
S. Mizumoto (1991)
Poles and residues of standardL-functions attached to Siegel modular formsMathematische Annalen, 289
K. Ribet (1993)
Modular elliptic curves and fermat's last theorem
S. Böcherer, B. Heim (2000)
L-functions on GSpMath. Z., 235
D. Zagier (1980)
Sur la conjecture de Saito-Kurokawa (d?apr�s H. Maass). S�m. Delange-Pisot-Poitou (1979/1980)Prog. Math., 12
(1980)
Sém. Delange-Pisot-Poitou 1979/1980
(1994)
Admissible Non-Archimedean standard zeta functions of Siegel modular forms
S. Böcherer (1985)
�ber die Funktionalgleichung automorpher L-Funktionen zur Siegelschen ModulgruppeJ. Reine Angew. Math., 362
In modern number theory there are famous theorems on the modularity of Dirichlet series attached to geometric or arithmetic objects. There is Hecke’s converse theorem, Wiles proof of the Taniyama-Shimura conjecture, and Fermat’s Last Theorem to name a few. In this article in the spirit of the Langlands philosophy we raise the question on the modularity of the GL2-twisted spinor L-function Z G ⊗ h (s) related to automorphic forms G,h on the symplectic group GSp2 and GL2. This leads to several promising results and finally culminates into a precise very general conjecture. This gives new insights into the Miyawaki conjecture on spinor L-functions of modular forms. We indicate how this topic is related to Ramakrishnan’s work on the modularity of the Rankin-Selberg L-series.
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg – Springer Journals
Published: Jul 4, 2009
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.