Access the full text.
Sign up today, get DeepDyve free for 14 days.
In this paper we decompose the rational homology of the ordered configuration space of n open unit-diameter disks in the infinite strip of width 2 as a direct sum of induced Sn\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$S_{n}$$\end{document}-representations. In (Alpert in Generalized representation stability for disks in a strip and no-k-equal spaces, arXiv:2006.01240, 2020), Alpert proves that the kth\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$k^{\text {th}}$$\end{document}-integral homology of the ordered configuration space of n open unit-diameter disks in the infinite strip of width 2 is an FIk+1\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$_{k+1}$$\end{document}-module by studying certain operations on homology called “high-insertion maps.” The integral homology groups Hk(Conf(n,2))\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$H_{k}\big (\text {Conf}(n,2)\big )$$\end{document} are free abelian, and Alpert computes a basis for Hk(Conf(n,2))\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$H_{k}\big (\text {Conf}(n,2)\big )$$\end{document} as an abelian group. In this paper, we study the rational homology groups as Sn\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$S_{n}$$\end{document}-representations. We find a new basis for H1(Conf(n,2);Q),\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$H_{1}\big (\text {Conf}(n,2);\mathbb {Q}\big ),$$\end{document} and use this, along with results of Ramos (Proc Am Math Soc 145(11):4647–4660, 2017), to give an explicit description of Hk(Conf(n,2);Q)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$H_{k}\big (\text {Conf}(n,2);\mathbb {Q}\big )$$\end{document} as a direct sum of induced Sn\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$S_{n}$$\end{document}-representations arising from free FId\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$_{d}$$\end{document}-modules. We use this decomposition to calculate the rank of the rational homology of the unordered configuration space of n open unit-diameter disks in the infinite strip of width 2.
Journal of Applied and Computational Topology – Springer Journals
Published: Sep 1, 2023
Keywords: Configuration Space; Representation Stability; Representation Theory; Homological Stability; 55R80; 55R40; 18A25
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.