Get 20M+ Full-Text Papers For Less Than $1.50/day. Subscribe now for You or Your Team.

Learn More →

Parasite biodiversity and host defenses: chewing lice and immune response of their avian hosts

Parasite biodiversity and host defenses: chewing lice and immune response of their avian hosts Antagonistic host-parasite interactions lead to coevolution of host defenses and parasite virulence. Such adaptation by parasites to host defenses may occur to the detriment of the ability of parasites to exploit alternative hosts, causing parasite specialization and speciation. We investigated the relationship between level of anti-parasite defense in hosts and taxonomic richness of two chewing louse suborders (Phthiraptera: Amblycera, Ischnocera) on birds. While Amblyceran lice tend to occur in contact with host skin, feed on host skin and chew emerging tips of developing feathers to obtain blood, Ischnoceran lice live on feathers and feed on the non-living keratin of feather barbules. We hypothesized that Amblyceran abundance and richness would have evolved in response to interaction with the immune system of the host, while Ischnoceran taxonomic richness would have evolved independently of immunological constraints. In an interspecific comparison, the abundance of Ischnocerans was positively related to host body size, while host body mass and Ischnoceran taxonomic richness accounted for the abundance of Amblycerans. Amblyceran taxonomic richness was predicted by the intensity of T-cell mediated immune response of nestling hosts, while the T-cell response of adults had no significant effect. In contrast, Ischnoceran taxonomic richness was not predicted by host T-cell responses. These results suggest that the taxonomic richness of different parasite taxa is influenced by different host defenses, and they are consistent with the hypothesis that increasing host allocation to immune defense increases Amblyceran biodiversity. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Oecologia Springer Journals

Parasite biodiversity and host defenses: chewing lice and immune response of their avian hosts

Oecologia , Volume 142 (2) – Oct 21, 2004

Loading next page...
 
/lp/springer-journals/parasite-biodiversity-and-host-defenses-chewing-lice-and-immune-MzThkzynV1

References (94)

Publisher
Springer Journals
Copyright
Copyright © 2004 by Springer-Verlag
Subject
LifeSciences
ISSN
0029-8549
eISSN
1432-1939
DOI
10.1007/s00442-004-1735-8
pmid
15503162
Publisher site
See Article on Publisher Site

Abstract

Antagonistic host-parasite interactions lead to coevolution of host defenses and parasite virulence. Such adaptation by parasites to host defenses may occur to the detriment of the ability of parasites to exploit alternative hosts, causing parasite specialization and speciation. We investigated the relationship between level of anti-parasite defense in hosts and taxonomic richness of two chewing louse suborders (Phthiraptera: Amblycera, Ischnocera) on birds. While Amblyceran lice tend to occur in contact with host skin, feed on host skin and chew emerging tips of developing feathers to obtain blood, Ischnoceran lice live on feathers and feed on the non-living keratin of feather barbules. We hypothesized that Amblyceran abundance and richness would have evolved in response to interaction with the immune system of the host, while Ischnoceran taxonomic richness would have evolved independently of immunological constraints. In an interspecific comparison, the abundance of Ischnocerans was positively related to host body size, while host body mass and Ischnoceran taxonomic richness accounted for the abundance of Amblycerans. Amblyceran taxonomic richness was predicted by the intensity of T-cell mediated immune response of nestling hosts, while the T-cell response of adults had no significant effect. In contrast, Ischnoceran taxonomic richness was not predicted by host T-cell responses. These results suggest that the taxonomic richness of different parasite taxa is influenced by different host defenses, and they are consistent with the hypothesis that increasing host allocation to immune defense increases Amblyceran biodiversity.

Journal

OecologiaSpringer Journals

Published: Oct 21, 2004

There are no references for this article.