Access the full text.
Sign up today, get DeepDyve free for 14 days.
We give a complete characterization of constant quadratic functions over an affine variety. This result is used to convexify the objective function of a general quadratic programming problem (Pb) which contains linear equality constraints. Thanks to this convexification, we show that one can express as a semidefinite program the dual of the partial Lagrangian relaxation of (Pb) where the linear constraints are not relaxed. We apply these results by comparing two semidefinite relaxations made from two sets of null quadratic functions over an affine variety.
4OR – Springer Journals
Published: Jul 21, 2006
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.