Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Pelagic-benthic coupling of the microbial food web modifies nutrient cycles along a cascade-dammed river

Pelagic-benthic coupling of the microbial food web modifies nutrient cycles along a... Cascade dams disrupt the river continuum, altering hydrology, biodiversity and nutrient flux. Describing the diversity of multi-trophic microbiota and assessing microbial contributions to the ecosystem processes are prerequisites for the restoration of these aquatic systems. This study investigated the microbial food web structure along a cascade-dammed river, paying special attention to the multi-trophic relationships and the potential role of pelagic-benthic coupling in nutrient cycles. Our results revealed the discontinuity in bacterial and eukaryotic community composition, functional group proportion, as well as α-diversity due to fragmentation by damming. The high microbial dissimilarity along the river, with the total multi-trophic β-diversity was 0.84, was almost completely caused by species replacement. Synchronization among trophic levels suggests potential interactions of the pelagic and the benthic groups, of which the β-diversities were primarily influenced by geographic and environmental factors, respectively. Dam-induced environmental variations, especially hydrological and nutrient variables, potentially influence the microbial food web via both top-down and bottom-up forces. We proposed that the cycles of carbon, nitrogen and phosphorus are influenced by multi-trophic groups through autotrophic and heterotrophic processes, predator-prey relationships, as well as the release of nutrients mainly by microfauna. Our results advance the notion that pelagic-benthic trophic coupling may intensify the accumulation of organic carbon, ammonium and inorganic phosphorus, thereby changing the biogeochemical patterns along river systems. As a consequence, researchers should pay more attention to the multi-trophic studies when assessing the environmental impacts, and to provide the necessary guidance for the ecological conservation and restoration of the dam-regulated systems.[graphic not available: see fulltext] http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Frontiers of Environmental Science & Engineering Springer Journals

Pelagic-benthic coupling of the microbial food web modifies nutrient cycles along a cascade-dammed river

Loading next page...
 
/lp/springer-journals/pelagic-benthic-coupling-of-the-microbial-food-web-modifies-nutrient-szMzbXospI

References (112)

Publisher
Springer Journals
Copyright
Copyright © Higher Education Press 2021
ISSN
2095-2201
eISSN
2095-221X
DOI
10.1007/s11783-021-1484-5
Publisher site
See Article on Publisher Site

Abstract

Cascade dams disrupt the river continuum, altering hydrology, biodiversity and nutrient flux. Describing the diversity of multi-trophic microbiota and assessing microbial contributions to the ecosystem processes are prerequisites for the restoration of these aquatic systems. This study investigated the microbial food web structure along a cascade-dammed river, paying special attention to the multi-trophic relationships and the potential role of pelagic-benthic coupling in nutrient cycles. Our results revealed the discontinuity in bacterial and eukaryotic community composition, functional group proportion, as well as α-diversity due to fragmentation by damming. The high microbial dissimilarity along the river, with the total multi-trophic β-diversity was 0.84, was almost completely caused by species replacement. Synchronization among trophic levels suggests potential interactions of the pelagic and the benthic groups, of which the β-diversities were primarily influenced by geographic and environmental factors, respectively. Dam-induced environmental variations, especially hydrological and nutrient variables, potentially influence the microbial food web via both top-down and bottom-up forces. We proposed that the cycles of carbon, nitrogen and phosphorus are influenced by multi-trophic groups through autotrophic and heterotrophic processes, predator-prey relationships, as well as the release of nutrients mainly by microfauna. Our results advance the notion that pelagic-benthic trophic coupling may intensify the accumulation of organic carbon, ammonium and inorganic phosphorus, thereby changing the biogeochemical patterns along river systems. As a consequence, researchers should pay more attention to the multi-trophic studies when assessing the environmental impacts, and to provide the necessary guidance for the ecological conservation and restoration of the dam-regulated systems.[graphic not available: see fulltext]

Journal

Frontiers of Environmental Science & EngineeringSpringer Journals

Published: Apr 1, 2022

Keywords: Reservoir; Multi-trophic; Beta diversity; Predator-prey; Nutrient accumulation

There are no references for this article.