Access the full text.
Sign up today, get DeepDyve free for 14 days.
[In this chapter, we discuss the physical layer secrecy transmission in a downlink cellular network under TDMA, coexisting with randomly located eavesdroppers. We adopt and investigate a secure multi-antenna transmission scheme in which artificial noise is injected into the null space of the legitimate channel to confuse eavesdroppers, and provide a comprehensive secrecy performance analysis and system design/optimization under the stochastic geometry framework. We first analyze the optimal power allocation to minimize the SOP. Subject to an SOP constraint, we then propose a dynamic parameter transmission scheme (DPTS) and a static parameter transmission scheme (SPTS) to maximize secrecy throughput. Our results give new insight into secure transmission designs in a random cellular network. Numerical results are demonstrated to validate our theoretical analysis.]
Published: Oct 5, 2016
Keywords: Physical Layer Security; Downlink Cellular Network; Power Allocation Ratio; Private Transmission; Secrecy Outage
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.