Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Plant Growth Promotion at Low Temperature by Phosphate-Solubilizing Pseudomonas Spp. Isolated from High-Altitude Himalayan Soil

Plant Growth Promotion at Low Temperature by Phosphate-Solubilizing Pseudomonas Spp. Isolated... Scarcity of arable land, limited soil nutrient availability, and low-temperature conditions in the Himalayan regions need to be smartly managed using sustainable approaches for better crop yields. Microorganisms, able to efficiently solubilize phosphate at low temperatures, provide an opportunity to promote plant growth in an ecofriendly way. In this study, we have investigated the ability of psychrotolerant Pseudomonas spp., isolated from high altitudes of Indian Himalaya to solubilize P at low temperature. Quantitative estimation of phosphate solubilization and production of relevant enzymes at two different temperatures (15 and 25 °C) was performed for 4 out of 11 selected isolates, namely, GBPI_506 (Pseudomonas sp.), GBPI_508 (Pseudomonas palleroniana), GBPI_Hb61 (Pseudomonas proteolytica), and GBPI_CDB143 (Pseudomonas azotoformans). Among all, isolate GBPI_CDB143 showed highest efficiency to solubilize tri-calcium phosphate (110.50 ± 3.44 μg/mL) at 25 °C after 6 days while the culture supernatants of isolate GBPI_506 displayed the highest phytase activity (15.91 ± 0.35 U/mL) at 15 °C and alkaline phosphatase (3.09 ± 0.07 U/mL) at 25 °C in 6 and 9 days, respectively. Out of five different organic acids quantified, oxalic acid and malic acid were produced in maximum quantity by all four isolates. With the exception of GBPI_508, inoculation of bacteria promoted overall growth (rosette diameter, leaf area, and biomass) of Arabidopsis thaliana plants as compared to uninoculated control plants in growth chamber conditions. The plant growth promotion by each bacterial isolate was further validated by monitoring root colonization in the inoculated plants. These bacterial isolates with low-temperature phosphate solubilization potential along with phosphatases and phytase activity at low temperature could be harnessed for sustainable crop production in P-deficient agricultural soils under mountain ecosystems. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Microbial Ecology Springer Journals

Plant Growth Promotion at Low Temperature by Phosphate-Solubilizing Pseudomonas Spp. Isolated from High-Altitude Himalayan Soil

Loading next page...
 
/lp/springer-journals/plant-growth-promotion-at-low-temperature-by-phosphate-solubilizing-5qB0A45K22

References (51)

Publisher
Springer Journals
Copyright
Copyright © The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021
ISSN
0095-3628
eISSN
1432-184X
DOI
10.1007/s00248-021-01702-1
Publisher site
See Article on Publisher Site

Abstract

Scarcity of arable land, limited soil nutrient availability, and low-temperature conditions in the Himalayan regions need to be smartly managed using sustainable approaches for better crop yields. Microorganisms, able to efficiently solubilize phosphate at low temperatures, provide an opportunity to promote plant growth in an ecofriendly way. In this study, we have investigated the ability of psychrotolerant Pseudomonas spp., isolated from high altitudes of Indian Himalaya to solubilize P at low temperature. Quantitative estimation of phosphate solubilization and production of relevant enzymes at two different temperatures (15 and 25 °C) was performed for 4 out of 11 selected isolates, namely, GBPI_506 (Pseudomonas sp.), GBPI_508 (Pseudomonas palleroniana), GBPI_Hb61 (Pseudomonas proteolytica), and GBPI_CDB143 (Pseudomonas azotoformans). Among all, isolate GBPI_CDB143 showed highest efficiency to solubilize tri-calcium phosphate (110.50 ± 3.44 μg/mL) at 25 °C after 6 days while the culture supernatants of isolate GBPI_506 displayed the highest phytase activity (15.91 ± 0.35 U/mL) at 15 °C and alkaline phosphatase (3.09 ± 0.07 U/mL) at 25 °C in 6 and 9 days, respectively. Out of five different organic acids quantified, oxalic acid and malic acid were produced in maximum quantity by all four isolates. With the exception of GBPI_508, inoculation of bacteria promoted overall growth (rosette diameter, leaf area, and biomass) of Arabidopsis thaliana plants as compared to uninoculated control plants in growth chamber conditions. The plant growth promotion by each bacterial isolate was further validated by monitoring root colonization in the inoculated plants. These bacterial isolates with low-temperature phosphate solubilization potential along with phosphatases and phytase activity at low temperature could be harnessed for sustainable crop production in P-deficient agricultural soils under mountain ecosystems.

Journal

Microbial EcologySpringer Journals

Published: Oct 1, 2021

Keywords: Low temperature; Plant growth promotion; Arabidopsis thaliana; Fluorescence microscopy; Indian Himalayan region

There are no references for this article.