Predicting Pandemics in a Globally Connected World, Volume 1A 2D Kinetic Model for Crowd Dynamics with Disease Contagion
Predicting Pandemics in a Globally Connected World, Volume 1: A 2D Kinetic Model for Crowd...
Kim, Daewa; Quaini, Annalisa
2022-02-18 00:00:00
[We focus on the modeling and simulation of an infectious disease spreading in a medium size population occupying a confined environment, such as an airport terminal, for short periods of time. Because of the size of the crowd and venue, we opt for a kinetic type model. The chapter is divided into two parts. In the first part, we adopt the simplifying assumption that people’s walking speed and direction are given. The resulting kinetic model features a variable that denotes the level of exposure to people spreading the disease, a parameter describing the contagion interaction strength, and a kernel function that is a decreasing function of the distance between a person and a spreading individual. Such model is tested on problems involving a small crowd in a square walkable domain. In the second part, ideas from the simplified model are used to incorporate disease spreading in a kinetic theory approach for crowd dynamics, i.e., the walking speed and direction result from interaction with other people and the venue.]
http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.pnghttp://www.deepdyve.com/lp/springer-journals/predicting-pandemics-in-a-globally-connected-world-volume-1-a-2d-hw1yqV6hz8
Predicting Pandemics in a Globally Connected World, Volume 1A 2D Kinetic Model for Crowd Dynamics with Disease Contagion
[We focus on the modeling and simulation of an infectious disease spreading in a medium size population occupying a confined environment, such as an airport terminal, for short periods of time. Because of the size of the crowd and venue, we opt for a kinetic type model. The chapter is divided into two parts. In the first part, we adopt the simplifying assumption that people’s walking speed and direction are given. The resulting kinetic model features a variable that denotes the level of exposure to people spreading the disease, a parameter describing the contagion interaction strength, and a kernel function that is a decreasing function of the distance between a person and a spreading individual. Such model is tested on problems involving a small crowd in a square walkable domain. In the second part, ideas from the simplified model are used to incorporate disease spreading in a kinetic theory approach for crowd dynamics, i.e., the walking speed and direction result from interaction with other people and the venue.]
Published: Feb 18, 2022
Recommended Articles
Loading...
There are no references for this article.
Share the Full Text of this Article with up to 5 Colleagues for FREE
Sign up for your 14-Day Free Trial Now!
Read and print from thousands of top scholarly journals.
To get new article updates from a journal on your personalized homepage, please log in first, or sign up for a DeepDyve account if you don’t already have one.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.