Access the full text.
Sign up today, get DeepDyve free for 14 days.
Abstract Cooling pipe system (CPS) in concrete arrays plays an important role to control the temperature changes in massive concrete such as dams, foundation bridges, etc. The application of CPS in massive concrete has also been studied by some researchers but only in positive qualities point of view of the CPS. The present study presents the results of an investigation of thermal behavior regarding crack formation due to the hydration heat in massive concrete structures. To reduce the thermal load and improve the reliability of protection against cracks in massive concrete, the temperature changes, particularly the temperature field and thermal stress, in such concrete with the presence of CPS were simulated and calculated with the help of the advanced computer programs. In addition, both the temperature field and the cracking index in the massive concrete with the CPS’s temperature of 15 °C were determined. As the results, the cracking index over time was greater than the allowable value of 1.5, which indicates that the risk of cracking did not occur when the CPS was applied in the massive concrete.
"Asian Journal of Civil Engineering" – Springer Journals
Published: Dec 1, 2019
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.