Access the full text.
Sign up today, get DeepDyve free for 14 days.
According to current findings, in the history of neurology proposed by Hughlings Jackson, certain later developed functions during ontogenesis of the central nervous system (CNS) tend to replace the older ones. In this context, recent and historical findings suggest that certain later developed cognitive and motor functions during brain ontogenesis related to higher levels of coordination tend to replace the older ones and their persistence is linked to various neuropsychiatric disorders. Particularly important functional disturbances in ADHD developed early in life likely linked to dissolution process are balance deficits linked to dysfunctions of higher levels of coordination related to neurophysiological and mental functions that typically occur in ADHD. In this context, recent data suggest that one of the important aspects of normal development that may play a role in ADHD is suppression of the so-called primitive reflexes. Taken together these data suggest that ADHD symptoms may present a compensatory process related to interference of more primitive neural mechanism, as related to primitive reflexes, with higher levels of brain functions linked to coordination and balance due to insufficiently developed cognitive and motor integration.
Activitas Nervosa Superior – Springer Journals
Published: Feb 21, 2017
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.