Access the full text.
Sign up today, get DeepDyve free for 14 days.
[Probabilistic cellular automata (PCA) are interacting discrete stochastic dynamical systems used as a modeling tool for a wide range of natural and societal phenomena. Their key features are: (i) a stochastic component that distinguishes them from the well-known cellular automata (CA) algorithms and (ii) an underlying parallelism that sets them apart from purely asynchronous simulation dynamics in statistical mechanics, such as interacting particle systems and Glauber dynamics. On the applied side, these features make PCA an attractive computational framework for high-performance computing, distributed computing, and simulation. Indeed, PCA have been put to good use as part of multiscale simulation frameworks for studying natural systems or large interconnected network structures. On the mathematical side, PCA have a rich mathematical theory that leads to a better understanding of the role of randomness and synchronicity in the evolution of large systems. This book is an attempt to present a wide panorama of the current status of PCA theory and applications. Contributions cover important issues and applications in probability, statistical mechanics, computer science, natural sciences, and dynamical systems. This initial chapter is intended both as a guide and an introduction to the issues discussed in the book. The chapter starts with a general overview of PCA modeling, followed by a presentation of conspicuous applications in different contexts. It closes with a discussion of the links between approaches and perspectives for future developments.]
Published: Feb 22, 2018
Keywords: Probabilistic Cellular Automata; Cellular Potts Model; Asynchronous Dynamics; Common Main Idea; Wildfire Modeling
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.