Access the full text.
Sign up today, get DeepDyve free for 14 days.
[Sentiment analysis from unstructured natural language text has recently received considerable attention from the research community. In the frame of biologically inspired machine learning approaches, finding good feature sets is particularly challenging yet very important. In this chapter, we focus on this fundamental issue of the sentiment analysis task. Specifically, we employ concepts as features and present a concept extraction algorithm to extract semantic features that exploit semantic relationships between words in natural language text. Additional conceptual information of a concept is obtained using the ConceptNet ontology. Concepts extracted from text are sent as queries to ConceptNet to extract their semantics. Further, we select important concepts and eliminate redundant concepts using the Minimum Redundancy and Maximum Relevance feature selection technique. All selected concepts are then used to build a machine learning model that classifies a given document as positive or negative]
Published: Dec 15, 2015
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.