Access the full text.
Sign up today, get DeepDyve free for 14 days.
[Sentiment analysis research has been increasing tremendously in recent times due to the wide range of business and social applications. Sentiment analysis from unstructured natural language text has recently received considerable attention from the research community. In this chapter, we propose a novel sentiment analysis model based on commonsense knowledge extracted from ConceptNet-based ontology and context information. ConceptNet-based ontology is used to determine the domain-specific concepts which in turn produced the domain-specific important features. Further, the polarities of the extracted concepts are determined using the contextual polarity lexicon which we developed by considering the context information of a word. Finally, semantic orientations of domain-specific features of the review document are aggregated based on the importance of a feature with respect to the domain. The importance of the feature is determined by the depth of the feature in the ontology. Experimental results show the effectiveness of the proposed methods.]
Published: Dec 15, 2015
Keywords: Sentiment Analysis Model; ConceptNet; Unstructured Natural Language Text; Opinion Words; Sentiment Lexicon
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.