Access the full text.
Sign up today, get DeepDyve free for 14 days.
XS Yang (2014)
Nature-inspired optimization algorithms
J. Kennedy (2004)
Probability and dynamics in the particle swarmProceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753), 1
Yujie Cai, Jun Sun, Jie Wang, Yanrui Ding, Na Tian, X. Liao, Wenbo Xu (2008)
Optimizing the codon usage of synthetic gene with QPSO algorithm.Journal of theoretical biology, 254 1
H He, EA Garcia (2009)
Learning from imbalanced dataIEEE Transactions on Knowledge and Data Engineering, 21
R. Krohling, L. Coelho (2006)
PSO-E: Particle Swarm with Exponential Distribution2006 IEEE International Conference on Evolutionary Computation
CW Reynolds (1987)
Flocks, herds and schools: a distributed behavioral modelACM Siggraph Computer Graphics, 21
Jun Sun, Wenbo Xu, Bin Feng (2005)
Adaptive parameter control for quantum-behaved particle swarm optimization on individual level2005 IEEE International Conference on Systems, Man and Cybernetics, 4
Jing Liu, Wenbo Xu, Jun Sun (2005)
Quantum-behaved particle swarm optimization with mutation operator17th IEEE International Conference on Tools with Artificial Intelligence (ICTAI'05)
A. Tharwat, A. Hassanien, Basem Elnaghi (2017)
A BA-based algorithm for parameter optimization of Support Vector MachinePattern Recognit. Lett., 93
M. Clerc, J. Kennedy (2002)
The particle swarm - explosion, stability, and convergence in a multidimensional complex spaceIEEE Trans. Evol. Comput., 6
Shawkat Ali, K. Smith‐Miles (2003)
Automatic parameter selection for polynomial kernelProceedings Fifth IEEE Workshop on Mobile Computing Systems and Applications
Jun Sun, Bin Feng, Wenbo Xu (2004)
Particle swarm optimization with particles having quantum behaviorProceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753), 1
A. Tharwat, A. Hassanien (2018)
Chaotic antlion algorithm for parameter optimization of support vector machineApplied Intelligence, 48
L. Coelho (2010)
Gaussian quantum-behaved particle swarm optimization approaches for constrained engineering design problemsExpert Syst. Appl., 37
(2014)
Nature-inspired optimization algorithms, 1st edn
Xiaoli Zhang, Xuefeng Chen, Zhengjia He (2010)
An ACO-based algorithm for parameter optimization of support vector machinesExpert Syst. Appl., 37
D. Eichel (2016)
Learning And Soft Computing Support Vector Machines Neural Networks And Fuzzy Logic Models
R. Krohling, Lehrstuhl Elektrische (2004)
Gaussian swarm: a novel particle swarm optimization algorithmIEEE Conference on Cybernetics and Intelligent Systems, 2004., 1
A. Tharwat, T. Gabel, A. Hassanien (2017)
Parameter Optimization of Support Vector Machine Using Dragonfly Algorithm
A. Subasi (2013)
Classification of EMG signals using PSO optimized SVM for diagnosis of neuromuscular disordersComputers in biology and medicine, 43 5
Shih-Wei Lin, K. Ying, Shih-Chieh Chen, Z. Lee (2008)
Particle swarm optimization for parameter determination and feature selection of support vector machinesExpert Syst. Appl., 35
J. Kennedy (2005)
Dynamic-probabilistic particle swarms
Gaige Wang, Lihong Guo (2013)
A Novel Hybrid Bat Algorithm with Harmony Search for Global Numerical OptimizationJ. Appl. Math., 2013
M. Miyatake, M. Veerachary, Fuhito Toriumi, Nobuhiko Fujii, H. Ko (2011)
Maximum Power Point Tracking of Multiple Photovoltaic Arrays: A PSO ApproachIEEE Transactions on Aerospace and Electronic Systems, 47
M. Maitra, A. Chatterjee (2008)
A hybrid cooperative-comprehensive learning based PSO algorithm for image segmentation using multilevel thresholdingExpert Syst. Appl., 34
Xinchao Zhao (2010)
A perturbed particle swarm algorithm for numerical optimizationAppl. Soft Comput., 10
T. Evgeniou, M. Pontil (2001)
Support Vector Machines: Theory and Applications
A. Tharwat, A. Hemedan, A. Hassanien, T. Gabel (2018)
A biometric-based model for fish species classificationFisheries Research, 204
Akhilesh Chander, A. Chatterjee, P. Siarry (2011)
A new social and momentum component adaptive PSO algorithm for image segmentationExpert Syst. Appl., 38
S. Omkar, Rahul Khandelwal, T. Ananth, G. Naik, S. Gopalakrishnan (2009)
Quantum behaved Particle Swarm Optimization (QPSO) for multi-objective design optimization of composite structuresExpert Syst. Appl., 36
Jun Sun, Wei Fang, V. Palade, Xiaojun Wu, Wenbo Xu (2011)
Quantum-behaved particle swarm optimization with Gaussian distributed local attractor pointAppl. Math. Comput., 218
D. Merwe, A. Engelbrecht (2003)
Data clustering using particle swarm optimizationThe 2003 Congress on Evolutionary Computation, 2003. CEC '03., 1
Shouyi Li, Ronggui Wang, Weiwei Hu, Jianqing Sun (2007)
A New QPSO Based BP Neural Network for Face Detection
(1998)
UC I } repository of machine learning databases repository of machine learning databases
A. Ben-Hur, Cheng Ong, S. Sonnenburg, B. Schölkopf, G. Rätsch (2008)
Support Vector Machines and Kernels for Computational BiologyPLoS Computational Biology, 4
Cheng-Lung Huang, Chieh-Jen Wang (2006)
A GA-based feature selection and parameters optimizationfor support vector machinesExpert Syst. Appl., 31
R. Eberhart, J. Kennedy (1995)
A new optimizer using particle swarm theoryMHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science
Mingyuan Zhao, Chong Fu, Luping Ji, K. Tang, Mingtian Zhou (2011)
Feature selection and parameter optimization for support vector machines: A new approach based on genetic algorithm with feature chromosomesExpert Syst. Appl., 38
Jing Liang, A. Qin, P. Suganthan, S. Baskar (2006)
Comprehensive learning particle swarm optimizer for global optimization of multimodal functionsIEEE Transactions on Evolutionary Computation, 10
S. Panda, N. Padhy (2008)
Optimal location and controller design of STATCOM for power system stability improvement using PSOJ. Frankl. Inst., 345
Chih-Hung Wu, G. Tzeng, Rong-Ho Lin (2009)
A Novel hybrid genetic algorithm for kernel function and parameter optimization in support vector regressionExpert Syst. Appl., 36
Lincy Mathews, Seetha Hari (2019)
Learning From Imbalanced DataAdvances in Computer and Electrical Engineering
Jun Sun, Wei Fang, Xiaojun Wu, V. Palade, Wenbo Xu (2012)
Quantum-Behaved Particle Swarm Optimization: Analysis of Individual Particle Behavior and Parameter SelectionEvolutionary Computation, 20
Maolong Xi, Jun Sun, Wenbo Xu (2008)
An improved quantum-behaved particle swarm optimization algorithm with weighted mean best positionAppl. Math. Comput., 205
Sahibsingh Dudani (1976)
The Distance-Weighted k-Nearest-Neighbor RuleIEEE Transactions on Systems, Man, and Cybernetics, SMC-6
(2006)
The Lévy particle swarmvy particle swarm
Craig Reynolds (1987)
Flocks, herds, and schools: a distributed behavioral modelSeminal graphics: pioneering efforts that shaped the field
(2005)
Huang D X
R. Poli, J. Kennedy, T. Blackwell (1995)
Particle swarm optimizationSwarm Intelligence, 1
A. Tharwat (2016)
Linear vs. quadratic discriminant analysis classifier: a tutorialInt. J. Appl. Pattern Recognit., 3
A. Atiya (2005)
Learning with Kernels: Support Vector Machines, Regularization, Optimization, and BeyondIEEE Transactions on Neural Networks, 16
O. Chapelle, V. Vapnik, O. Bousquet, Sayan Mukherjee (2002)
Choosing Multiple Parameters for Support Vector MachinesMachine Learning, 46
A. Tharwat, T. Gabel, A. Hassanien (2017)
Classification of Toxicity Effects of Biotransformed Hepatic Drugs Using Optimized Support Vector Machine
F. Friedrichs, C. Igel (2005)
Evolutionary tuning of multiple SVM parameters
S. Pal, S. Mitra (1992)
Multilayer perceptron, fuzzy sets, and classificationIEEE transactions on neural networks, 3 5
L. Coelho, R. Krohling (2005)
Predictive Controller Tuning Using Modified Particle Swarm Optimization Based on Cauchy and Gaussian Distributions
Z. Bashir, M. El-Hawary (2009)
Applying Wavelets to Short-Term Load Forecasting Using PSO-Based Neural NetworksIEEE Transactions on Power Systems, 24
A. Tharwat, Yasmine Moemen, A. Hassanien (2017)
Classification of toxicity effects of biotransformed hepatic drugs using whale optimized support vector machinesJournal of biomedical informatics, 68
Yunqiang Zhang, Peilin Zhang (2015)
Machine training and parameter settings with social emotional optimization algorithm for support vector machinePattern Recognit. Lett., 54
A. Tharwat, T. Gaber, Abdelhameed Ibrahim, A. Hassanien (2017)
Linear discriminant analysis: A detailed tutorialAI Commun., 30
S. Keerthi, Chih-Jen Lin (2003)
Asymptotic Behaviors of Support Vector Machines with Gaussian KernelNeural Computation, 15
Zhao Hui (2008)
Parameter optimization of ε-Support Vector Machine by genetic algorithmComputer Engineering and Applications
S. Mikki, A. Kishk (2006)
Quantum Particle Swarm Optimization for ElectromagneticsIEEE Transactions on Antennas and Propagation, 54
L Wang (2005)
Support vector machines: theory and applications, vol. 177
A. Tharwat (2016)
Principal component analysis - a tutorialInt. J. Appl. Pattern Recognit., 3
Evgeny Byvatov, G. Schneider (2003)
Support vector machine applications in bioinformatics.Applied bioinformatics, 2 2
Jun Sun, Wenbo Xu, Bin Feng (2004)
A global search strategy of quantum-behaved particle swarm optimizationIEEE Conference on Cybernetics and Intelligent Systems, 2004., 1
Support vector machine (SVM) parameters such as penalty parameter and kernel parameters have a great influence on the complexity and accuracy of SVM model. In this paper, quantum-behaved particle swarm optimization (QPSO) has been employed to optimize the parameters of SVM, so that the classification error can be reduced. To evaluate the proposed model (QPSO-SVM), the experiment adopted seven standard classification datasets which are obtained from UCI machine learning data repository. For verification, the results of the QPSO-SVM algorithm are compared with the standard PSO, and genetic algorithm (GA) which is one of the well-known optimization algorithms. Moreover, the results of QPSO are compared with the grid search, which is a conventional method of searching parameter values. The experimental results demonstrated that the proposed model is capable to find the optimal values of the SVM parameters. The results also showed lower classification error rates compared with standard PSO and GA algorithms.
Journal of Classification – Springer Journals
Published: Jan 21, 2019
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.