Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Quantum Game SimulationGames with Werner-Like States

Quantum Game Simulation: Games with Werner-Like States [The density matrix of a Werner quantum state is invariant under all unitary operators of the form U⊗U\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U\otimes U$$\end{document}. That is, its ρ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho $$\end{document} matrix satisfies ρ=(U⊗U)ρ(U†⊗U†)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho =(U\otimes U)\rho (U^{\dagger }\otimes U^{\dagger })$$\end{document} for all unitary operators U acting on the Hilbert space [1]. Werner-like states as implemented in quantum games in this chapter are linear combinations of a maximally entangled and an uncorrelated mixed state that will act as alternative initial states in the EWL model.] http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png

Quantum Game SimulationGames with Werner-Like States

Part of the Emergence, Complexity and Computation Book Series (volume 36)
Quantum Game Simulation — May 22, 2019

Loading next page...
 
/lp/springer-journals/quantum-game-simulation-games-with-werner-like-states-BzW5Flugpp
Publisher
Springer International Publishing
Copyright
© Springer Nature Switzerland AG 2019
ISBN
978-3-030-19633-2
Pages
193 –207
DOI
10.1007/978-3-030-19634-9_10
Publisher site
See Chapter on Publisher Site

Abstract

[The density matrix of a Werner quantum state is invariant under all unitary operators of the form U⊗U\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U\otimes U$$\end{document}. That is, its ρ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho $$\end{document} matrix satisfies ρ=(U⊗U)ρ(U†⊗U†)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho =(U\otimes U)\rho (U^{\dagger }\otimes U^{\dagger })$$\end{document} for all unitary operators U acting on the Hilbert space [1]. Werner-like states as implemented in quantum games in this chapter are linear combinations of a maximally entangled and an uncorrelated mixed state that will act as alternative initial states in the EWL model.]

Published: May 22, 2019

There are no references for this article.