Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Radioactive isotope separation with 3D-printed flow-based device

Radioactive isotope separation with 3D-printed flow-based device Radioactive isotope (RI) metals are a new type of tracer for positron emission tomography generated from the target metal by proton irradiation using a cyclotron. The generated metal RIs need to be separated from the target metal rapidly and effectively. In the present study, we developed a 3D-printed flow device to separate metal RIs from target metals. The separation was performed with selective formation of ethylenediaminetetraacetic acid (EDTA) complex based on the difference in formation constants. The RI metal selectively formed a EDTA complex, thus changing its ionic charge in solution. The solution was then introduced into a cation exchange column for selective adsorption of the target metal. The solution with added chelator and controlled pH was introduced into the developed system and automatically separated metal RI from target metals within 14 min. The separation method was applied to separate RI 67Ga from target metal Zn using a mixture of 107 pg L−167Ga in 250 mg L−1 Zn2+. The recoveries of 67Ga and Zn were 97% and 100%, respectively. Furthermore, an ultraviolet (UV) radiation reactor was integrated into the system to decompose the EDTA complex and recover the Ga3+ ion. Ga3+ recovery by UV radiation was effective, 87%. The developed system was also successfully applied to the separation of Zr and Y. Therefore, the method and system can be applied to separate other metal RIs from target metals.Graphical abstract[graphic not available: see fulltext] http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Analytical Sciences Springer Journals

Radioactive isotope separation with 3D-printed flow-based device

Loading next page...
 
/lp/springer-journals/radioactive-isotope-separation-with-3d-printed-flow-based-device-BCxoTHZLOX

References (19)

Publisher
Springer Journals
Copyright
Copyright © The Author(s), under exclusive licence to The Japan Society for Analytical Chemistry 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
ISSN
0910-6340
eISSN
1348-2246
DOI
10.1007/s44211-022-00254-9
Publisher site
See Article on Publisher Site

Abstract

Radioactive isotope (RI) metals are a new type of tracer for positron emission tomography generated from the target metal by proton irradiation using a cyclotron. The generated metal RIs need to be separated from the target metal rapidly and effectively. In the present study, we developed a 3D-printed flow device to separate metal RIs from target metals. The separation was performed with selective formation of ethylenediaminetetraacetic acid (EDTA) complex based on the difference in formation constants. The RI metal selectively formed a EDTA complex, thus changing its ionic charge in solution. The solution was then introduced into a cation exchange column for selective adsorption of the target metal. The solution with added chelator and controlled pH was introduced into the developed system and automatically separated metal RI from target metals within 14 min. The separation method was applied to separate RI 67Ga from target metal Zn using a mixture of 107 pg L−167Ga in 250 mg L−1 Zn2+. The recoveries of 67Ga and Zn were 97% and 100%, respectively. Furthermore, an ultraviolet (UV) radiation reactor was integrated into the system to decompose the EDTA complex and recover the Ga3+ ion. Ga3+ recovery by UV radiation was effective, 87%. The developed system was also successfully applied to the separation of Zr and Y. Therefore, the method and system can be applied to separate other metal RIs from target metals.Graphical abstract[graphic not available: see fulltext]

Journal

Analytical SciencesSpringer Journals

Published: May 1, 2023

Keywords: Radioisotopes; 3D-printed device; Separation; Positron emission tomography

There are no references for this article.