Access the full text.
Sign up today, get DeepDyve free for 14 days.
Sara Domínguez (2009)
Galois representations and tame Galois realizations
Pierre Colmez (2013)
Une construction de BdR+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B_{\rm dR}^+$$\end{document}Rend. Semin. Mat. Univ. Padova, 128
S. Arias-de-Reyna (2009)
Formal groups, supersingular abelian varieties and tame ramification☆Journal of Algebra, 334
Pierre Colmez (2013)
109Rend. Semin. Mat. Univ. Padova, 128
(1992)
Une construction de B + dR
Adrian Iovita, Alexandru Zaharescu (1999)
Galois theory of BdR+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B^+_{\text{dR}}$$\end{document}Compos. Math., 117
M. Rosen, K. Zimmermann (1989)
Torsion points of generic formal groupsTransactions of the American Mathematical Society, 311
LEXANDRU
A. Iovita, J. Morrow, A. Zaharescu (2021)
On p-adic uniformization of abelian varieties with good reductionCompositio Mathematica, 158
F Robert (1987)
Coleman, Ramified torsion points on curvesDuke Math. J., 54
F Robert (1987)
615Duke Math. J., 54
Pierre Colmez (1992)
629Math. Ann., 292
J. Fontaine (1982)
Formes Différentielles et Modules de Tate des Variétés Abéliennes sur les Corps LocauxInventiones mathematicae, 65
Tony Feng, Alexander Meli (2016)
p-divisible groups
(1999)
Galois theory of B + dR
(1988)
Théorème de comparaison p-adique pour les schémas abéliens -I : Construction de l'accouplement de périodes
S. Arias-de-Reyna, N'uria Vila (2010)
Tame Galois Realizations of GSp4(ℓ) over ℚInternational Mathematics Research Notices, 2011
R. Coleman (1987)
Ramified torsion points on curvesDuke Mathematical Journal, 54
Exposé II : Le corps des périodes p -adiques , Périodes p -adiques - Séminaire de Bures, 1988 (Jean-Marc Fontaine, ed.), Astérisque, no. 223, Société mathématique de France, 1994, talk:2 (fr)
M. Hazewinkel (1978)
Formal Groups and Applications
Jean-Pierre Serre (1971)
Propriétés galoisiennes des points d'ordre fini des courbes elliptiquesInventiones mathematicae, 15
Tim Browning, Florian Bouyer (2008)
Local Fields
Let p be a rational prime, let F denote a finite, unramified extension of Qp\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\mathbb {Q}_p$$\end{document}, let K be the completion of the maximal unramified extension of Qp\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\mathbb {Q}_p$$\end{document}, and let K¯\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\overline{K}$$\end{document} be some fixed algebraic closure of K. Let A be an abelian variety defined over F, with good reduction, let A\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\mathcal {A}$$\end{document} denote the Néron model of A over Spec(OF)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\textrm{Spec}(\mathcal {O}_F)$$\end{document}, and let A^\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\widehat{\mathcal {A}}$$\end{document} be the formal completion of A\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\mathcal {A}$$\end{document} along the identity of its special fiber, i.e. the formal group of A. In this work, we prove two results concerning the ramification of p-power torsion points on A^\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\widehat{\mathcal {A}}$$\end{document}. One of our main results describes conditions on A^\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\widehat{\mathcal {A}}$$\end{document}, base changed to Spf(OK)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\text {Spf}(\mathcal {O}_K) $$\end{document}, for which the field K(A^[p])/K\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$K(\widehat{\mathcal {A}}[p])/K$$\end{document} i s a tamely ramified extension where A^[p]\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\widehat{\mathcal {A}}[p]$$\end{document} denotes the group of p-torsion points of A^\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\widehat{\mathcal {A}}$$\end{document} over OK¯\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\mathcal {O}_{\overline{K}}$$\end{document}. This result generalizes previous work when A is 1-dimensional and work of Arias-de-Reyna when A is the Jacobian of certain genus 2 hyperelliptic curves.
Annales mathématiques du Québec – Springer Journals
Published: May 11, 2023
Keywords: Abelian varieties; Formal groups; Ramification; 11G10; 14K20; 11G25; 14L05
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.