Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Reaction-Diffusion Automata: Phenomenology, Localisations, ComputationPopulation Dynamics in Automata

Reaction-Diffusion Automata: Phenomenology, Localisations, Computation: Population Dynamics in... [Let us consider a two-dimensional hexagonal cellular automaton, every cell of which takes two states: species a and species b, and updates its state in discrete time indexautomaton!population depending on its own state and just the numbers of cell-states of its six neighbours. Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sigma_a^t(x)$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sigma_b^t(x)$\end{document} be sums of cell x’s neighbours in state a and b, respectively, at time step t.] http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png

Reaction-Diffusion Automata: Phenomenology, Localisations, ComputationPopulation Dynamics in Automata

Loading next page...
 
/lp/springer-journals/reaction-diffusion-automata-phenomenology-localisations-computation-Yrn6SXMO0L
Publisher
Springer Berlin Heidelberg
Copyright
© Springer-Verlag Berlin Heidelberg 2013
ISBN
978-3-642-31077-5
Pages
165 –182
DOI
10.1007/978-3-642-31078-2_9
Publisher site
See Chapter on Publisher Site

Abstract

[Let us consider a two-dimensional hexagonal cellular automaton, every cell of which takes two states: species a and species b, and updates its state in discrete time indexautomaton!population depending on its own state and just the numbers of cell-states of its six neighbours. Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sigma_a^t(x)$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sigma_b^t(x)$\end{document} be sums of cell x’s neighbours in state a and b, respectively, at time step t.]

Published: Jan 1, 2013

Keywords: Cellular Automaton; Parasite Species; Dependency Parameter; Transient Period; Black Pixel

There are no references for this article.