Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Reaction-Diffusion Automata: Phenomenology, Localisations, ComputationExcitable Delaunay Triangulations

Reaction-Diffusion Automata: Phenomenology, Localisations, Computation: Excitable Delaunay... [Given a planar finite set V the Delaunay triangulation [92] \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\mathcal D}$\end{document}(V)= ⟨V, E ⟩ is a graph subdividing the space onto triangles with vertices in V and edges in E where the circumcircle of any triangle contains no points of V other than its vertices. Neighbours of a node v ∈ V are nodes from V connected with v by edges from E.] http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png

Reaction-Diffusion Automata: Phenomenology, Localisations, ComputationExcitable Delaunay Triangulations

Loading next page...
 
/lp/springer-journals/reaction-diffusion-automata-phenomenology-localisations-computation-qvpJYBmhan
Publisher
Springer Berlin Heidelberg
Copyright
© Springer-Verlag Berlin Heidelberg 2013
ISBN
978-3-642-31077-5
Pages
115 –133
DOI
10.1007/978-3-642-31078-2_6
Publisher site
See Chapter on Publisher Site

Abstract

[Given a planar finite set V the Delaunay triangulation [92] \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\mathcal D}$\end{document}(V)= ⟨V, E ⟩ is a graph subdividing the space onto triangles with vertices in V and edges in E where the circumcircle of any triangle contains no points of V other than its vertices. Neighbours of a node v ∈ V are nodes from V connected with v by edges from E.]

Published: Jan 1, 2013

There are no references for this article.