Access the full text.
Sign up today, get DeepDyve free for 14 days.
[The goal of this paper is to design a spacecraft round trip transfer from a parking orbit to asteroid 2006 RH120\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{120}$$\end{document} during its geocentric capture while maximizing the final spacecraft mass or, equivalently, minimizing the delta-v. The spacecraft begins in a halo “parking” orbit around the Earth-Moon L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_2$$\end{document} libration point. The round-trip transfer is composed of three portions: the approach transfer from the parking orbit to 2006 RH120\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{120}$$\end{document}, the rendezvous “lock-in” portion with the spacecraft in proximity to and following the asteroid orbit, and finally the return transfer to L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_2$$\end{document}. An indirect method based on the maximum principle is used for our numerical calculations. To partially address the issue of local minima we restrict the control strategy to reflect an actuation corresponding to up to three thrust arcs during each portion of the transfer. Our model is formulated in the circular restricted four-body problem (CR4BP) with the Sun considered as a perturbation of the Earth-Moon circular restricted three body problem. A shooting method is applied to numerically optimize the round trip transfer, and the 2006 RH120\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{120}$$\end{document} rendezvous and departure points are optimized using a time discretization of the 2006 RH120\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{120}$$\end{document} trajectory.]
Published: Mar 27, 2016
Keywords: Asteroid 2006 RH 120\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{120}$$\end{document}; Sun perturbed Earth-Moon bicircular restricted four body problem; Geometric optimal control; Shooting method
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.