Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Recent Advances in Celestial and Space MechanicsMinimum Fuel Round Trip from a L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_2$$\end{document} Earth-Moon Halo Orbit to Asteroid 2006 RH120\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{120}$$\end{document}

Recent Advances in Celestial and Space Mechanics: Minimum Fuel Round Trip from a... [The goal of this paper is to design a spacecraft round trip transfer from a parking orbit to asteroid 2006 RH120\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{120}$$\end{document} during its geocentric capture while maximizing the final spacecraft mass or, equivalently, minimizing the delta-v. The spacecraft begins in a halo “parking” orbit around the Earth-Moon L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_2$$\end{document} libration point. The round-trip transfer is composed of three portions: the approach transfer from the parking orbit to 2006 RH120\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{120}$$\end{document}, the rendezvous “lock-in” portion with the spacecraft in proximity to and following the asteroid orbit, and finally the return transfer to L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_2$$\end{document}. An indirect method based on the maximum principle is used for our numerical calculations. To partially address the issue of local minima we restrict the control strategy to reflect an actuation corresponding to up to three thrust arcs during each portion of the transfer. Our model is formulated in the circular restricted four-body problem (CR4BP) with the Sun considered as a perturbation of the Earth-Moon circular restricted three body problem. A shooting method is applied to numerically optimize the round trip transfer, and the 2006 RH120\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{120}$$\end{document} rendezvous and departure points are optimized using a time discretization of the 2006 RH120\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{120}$$\end{document} trajectory.] http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png

Recent Advances in Celestial and Space MechanicsMinimum Fuel Round Trip from a L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_2$$\end{document} Earth-Moon Halo Orbit to Asteroid 2006 RH120\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{120}$$\end{document}

Part of the Mathematics for Industry Book Series (volume 23)
Editors: Bonnard, Bernard; Chyba, Monique

Loading next page...
 
/lp/springer-journals/recent-advances-in-celestial-and-space-mechanics-minimum-fuel-round-6Qz5oFVNXN
Publisher
Springer International Publishing
Copyright
© Springer International Publishing Switzerland 2016
ISBN
978-3-319-27462-1
Pages
117 –142
DOI
10.1007/978-3-319-27464-5_4
Publisher site
See Chapter on Publisher Site

Abstract

[The goal of this paper is to design a spacecraft round trip transfer from a parking orbit to asteroid 2006 RH120\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{120}$$\end{document} during its geocentric capture while maximizing the final spacecraft mass or, equivalently, minimizing the delta-v. The spacecraft begins in a halo “parking” orbit around the Earth-Moon L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_2$$\end{document} libration point. The round-trip transfer is composed of three portions: the approach transfer from the parking orbit to 2006 RH120\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{120}$$\end{document}, the rendezvous “lock-in” portion with the spacecraft in proximity to and following the asteroid orbit, and finally the return transfer to L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_2$$\end{document}. An indirect method based on the maximum principle is used for our numerical calculations. To partially address the issue of local minima we restrict the control strategy to reflect an actuation corresponding to up to three thrust arcs during each portion of the transfer. Our model is formulated in the circular restricted four-body problem (CR4BP) with the Sun considered as a perturbation of the Earth-Moon circular restricted three body problem. A shooting method is applied to numerically optimize the round trip transfer, and the 2006 RH120\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{120}$$\end{document} rendezvous and departure points are optimized using a time discretization of the 2006 RH120\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{120}$$\end{document} trajectory.]

Published: Mar 27, 2016

Keywords: Asteroid 2006 RH 120\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{120}$$\end{document}; Sun perturbed Earth-Moon bicircular restricted four body problem; Geometric optimal control; Shooting method

There are no references for this article.