Recent Advances in Celestial and Space MechanicsTime-Minimum Control of the Restricted Elliptic Three-Body Problem Applied to Space Transfer
Recent Advances in Celestial and Space Mechanics: Time-Minimum Control of the Restricted Elliptic...
Chyba, Monique; Patterson, Geoff; Picot, Gautier
2016-03-27 00:00:00
[In this chapter, we investigate time minimal transfers in the elliptic restricted 3-body problem. We study the controllability of the problem and show that it is small-time locally controllable at the equilibrium points. We present results about the structure of the extremal trajectories, based on a previous study of the time minimum control of the circular restricted 3-body problem. We use indirect numerical methods in optimal control to simulate time-minimizing space transfers using the elliptic model from the geostationary orbit to the equilibrium points L1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$L_1$$\end{document} and L2\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$L_2$$\end{document} in the Earth-Moon system, as well as a rendezvous mission with a near-Earth asteroid.]
http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.pnghttp://www.deepdyve.com/lp/springer-journals/recent-advances-in-celestial-and-space-mechanics-time-minimum-control-Gv23H3QsEL
Recent Advances in Celestial and Space MechanicsTime-Minimum Control of the Restricted Elliptic Three-Body Problem Applied to Space Transfer
[In this chapter, we investigate time minimal transfers in the elliptic restricted 3-body problem. We study the controllability of the problem and show that it is small-time locally controllable at the equilibrium points. We present results about the structure of the extremal trajectories, based on a previous study of the time minimum control of the circular restricted 3-body problem. We use indirect numerical methods in optimal control to simulate time-minimizing space transfers using the elliptic model from the geostationary orbit to the equilibrium points L1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$L_1$$\end{document} and L2\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$L_2$$\end{document} in the Earth-Moon system, as well as a rendezvous mission with a near-Earth asteroid.]
Published: Mar 27, 2016
Keywords: Optimal control theory; Astrodynamics; Near Earth Orbiter
Recommended Articles
Loading...
There are no references for this article.
Share the Full Text of this Article with up to 5 Colleagues for FREE
Sign up for your 14-Day Free Trial Now!
Read and print from thousands of top scholarly journals.
To get new article updates from a journal on your personalized homepage, please log in first, or sign up for a DeepDyve account if you don’t already have one.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.