Access the full text.
Sign up today, get DeepDyve free for 14 days.
E. Elsayed, Rasool Shah, K. Nonlaopon (2022)
The Analysis of the Fractional-Order Navier-Stokes Equations by a Novel ApproachJournal of Function Spaces
Qiao Liu, Guowei Dai (2018)
On the 3D Navier–Stokes equations with regularity in pressureJournal of Mathematical Analysis and Applications, 458
C. Cao (2010)
Sufficient conditions for the regularity to the 3D Navier?Stokes equationsDiscrete Contin. Dyn. Syst., Ser. A, 26
Qiao Liu, Jihong Zhao (2018)
Blowup criteria in terms of pressure for the 3D nonlinear dissipative system modeling electro-diffusionJournal of Evolution Equations, 18
I. Kukavica, M. Ziane (2007)
Navier-Stokes equations with regularity in one directionJournal of Mathematical Physics, 48
O. Abad (2022)
4831Filomat, 36
Y. Zhou (2006)
On regularity criteria in terms of pressure for the Navier-Stokes equations in R3\documentclass[12pt]{minimal}Proc. Am. Math. Soc., 134
L Escauriaza, G Seregin, Vladimír Sverák (2003)
L3,∞-solutions of the Navier-Stokes equations and backward uniquenessRussian Mathematical Surveys, 58
C. Cao (2009)
Sufficient conditions for the regularity to the 3 D Navier-Stokes equationsDiscrete and Continuous Dynamical Systems, 26
Davi Veiga, H. Beirão (1995)
A new regularity class for the Navier-Stokes equations in R^n, 16
L. Escauriaza, G. Seregin (2003)
L3,?\documentclass[12pt]{minimal}Nonlinear Probl. Math. Phys. Relat. Top. II, 18
H. Beirãoda Veiga (1995)
A new regularity class for the Navier?Stokes equations in Rn\documentclass[12pt]{minimal}Chin. Ann. Math., Ser. B, 16
H. Beirãoda Veiga (1995)
407Chin. Ann. Math., Ser. B, 16
Zhifei Zhang, Qionglei Chen (2005)
Regularity criterion via two components of vorticity on weak solutions to the Navier-Stokes equations in R 3Journal of Differential Equations, 216
Xuanji Jia, Yong Zhou (2012)
A new regularity criterion for the 3D incompressible MHD equations in terms of one component of the gradient of pressureJournal of Mathematical Analysis and Applications, 396
Zujin Zhang, Peng Li, Gaohang Yu (2013)
Regularity criteria for the 3D MHD equations via one directional derivative of the pressureJournal of Mathematical Analysis and Applications, 401
C. Cao (2010)
2263J. Differ. Equ., 248
Y. Zhou (2006)
On a regularity criterion in terms of the gradient of pressure for the Navier?Stokes equations in RN\documentclass[12pt]{minimal}Z. Angew. Math. Phys., 57
D. Fang, C. Qian (2012)
Regularity criterion for 3D Navier-Stokes Equations in Besov spacesarXiv: Analysis of PDEs
Yong Zhou (2006)
On a regularity criterion in terms of the gradient of pressure for the Navier-Stokes equations in $$\mathbb{R}^{N}$$Zeitschrift für angewandte Mathematik und Physik ZAMP, 57
C. Cao (2010)
1141Discrete Contin. Dyn. Syst., Ser. A, 26
M. Ragusa (1999)
Regularity of solutions of divergence form elliptic equations, 128
Yong Zhou (2004)
Regularity criteria in terms of pressure for the 3-D Navier-Stokes equations in a generic domainMathematische Annalen, 328
Yong Zhou (2005)
On regularity criteria in terms of pressure for the Navier-Stokes equations in ℝ³, 134
L. Berselli, G. Galdi (2002)
Regularity criteria involving the pressure for the weak solutions to the Navier-Stokes equations, 130
J. Leray (1934)
Sur le mouvement d'un liquide visqueux emplissant l'espaceActa Mathematica, 63
C. Cao, Jiahong Wu (2009)
Two regularity criteria for the 3D MHD equationsJournal of Differential Equations, 248
Zdenek Skalak (2014)
On the regularity of the solutions to the Navier–Stokes equations via the gradient of one velocity componentNonlinear Analysis-theory Methods & Applications, 104
Qiao Liu (2015)
A Regularity Criterion for the Navier-Stokes Equations in Terms of One Directional Derivative of the VelocityActa Applicandae Mathematicae, 140
S. Gala, Qiao Liu, M. Ragusa (2012)
A new regularity criterion for the nematic liquid crystal flowsApplicable Analysis, 91
Zujin Zhang, W. Yuan, Yong Zhou (2019)
Some remarks on the Navier-Stokes equations with regularity in one directionApplications of Mathematics, 64
G. Prodi (1959)
Un teorema di unicità per le equazioni di Navier-StokesAnnali di Matematica Pura ed Applicata, 48
D. Fang, C. Qian (2014)
Regularity criterion for 3D Navier?Stokes equations in Besov spacesCommun. Pure Appl. Anal., 13
Zhengguang Guo, S. Gala (2012)
A REGULARITY CRITERION FOR THE NAVIER–STOKES EQUATIONS IN TERMS OF ONE DIRECTIONAL DERIVATIVE OF THE VELOCITY FIELDAnalysis and Applications, 10
L. Berselli (2002)
3585Proc. Am. Math. Soc., 30
Z. Zhang, Q. Chen (2005)
Regularity criterion via two components of vorticity on weak solutions to the Navier?Stokes equations in R3\documentclass[12pt]{minimal}J. Differ. Equ., 216
Zujin Zhang (2018)
An improved regularity criterion for the Navier–Stokes equations in terms of one directional derivative of the velocity fieldBulletin of Mathematical Sciences, 8
P. Penel, M. Pokorný (2004)
Some New Regularity Criteria for the Navier-Stokes Equations Containing Gradient of the VelocityApplications of Mathematics, 49
Othman Abad, H. Zguitti (2022)
On the regularity of the class of generalized Drazin-Riesz invertible operatorsFilomat
In this remark, we consider regularity criterion for weak solutions to the 3d incompressible Navier–Stokes equations via pressure. It is proved that if the corressponding pressure P\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$P$\end{document} satisfies ∇h˜P∈Lβ(0,T;Lp(Rx1;Lq(Rx2;Lr(Rx3))))\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$\nabla _{\tilde{h}} P\in L^{\beta}(0,T;L^{p}(\mathbb{R}_{x_{1}};L^{q}( \mathbb{R}_{x_{2}};L^{r}(\mathbb{R}_{x_{3}}))))$\end{document} with 2β+1p+1q+1r=3\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$\frac{2}{\beta}+\frac{1}{p}+\frac{1}{q}+\frac{1}{r}=3$\end{document}, 65<p,q,r≤3\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$\frac{6}{5}< p, q, r \leq 3$\end{document} and 2−(1p+1q+1r)≥0\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$2-\big(\frac{1}{p}+\frac{1}{q}+\frac{1}{r}\big) \geq 0$\end{document}, then the weak solution remains smooth on (0,T]\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$(0,T]$\end{document}. Here, ∇h˜=(0,∂2,∂3)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$\nabla _{\tilde{h}}=(0,\partial _{2},\partial _{3})$\end{document}.
Acta Applicandae Mathematicae – Springer Journals
Published: Jun 1, 2023
Keywords: Navier–Stokes equations; Weak solution; Regularity criterion; Pressure; Anisotropic Lebesgue spaces; 35B65; 35Q35
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.