Access the full text.
Sign up today, get DeepDyve free for 14 days.
P. Roy, S. Ravan (1996)
Biomass estimation using satellite remote sensing data—An investigation on possible approaches for natural forestJournal of Biosciences, 21
R. Lucas, A. Mitchell, J. Armston (2015)
Measurement of Forest Above-Ground Biomass Using Active and Passive Remote Sensing at Large (Subnational to Global) ScalesCurrent Forestry Reports, 1
G. Asner, D. Knapp, E. Broadbent, P. Oliveira, M. Keller, J. Silva (2005)
Selective Logging in the Brazilian AmazonScience, 310
S. Magnussen, D. Mandallaz, J. Breidenbach, A. Lanz, C. Ginzler (2014)
National forest inventories in the service of small area estimation of stem volumeCanadian Journal of Forest Research, 44
J. Reiche, J. Verbesselt, D. Hoekman, M. Herold (2015)
Fusing Landsat and SAR time series to detect deforestation in the tropicsRemote Sensing of Environment, 156
E. Tomppo (2010)
National Forest Inventories : pathways for common reporting
B. Zeide (1980)
Plot size optimization.Forest Science, 26
T. Tokola, J. Pitkänen, S. Partinen, E. Muinonen (1996)
Point accuracy of a non-parametric method in estimation of forest characteristics with different satellite materialsInternational Journal of Remote Sensing, 17
G. Harper, M. Steininger, C. Tucker, D. Juhn, F. Hawkins (2007)
Fifty years of deforestation and forest fragmentation in MadagascarEnvironmental Conservation, 34
M. Wulder, J. White, R. Nelson, E. Næsset, H. Ørka, N. Coops, T. Hilker, C. Bater, T. Gobakken (2012)
Lidar sampling for large-area forest characterization: A reviewRemote Sensing of Environment, 121
T. Häme, J. Kilpi, H. Ahola, Y. Rauste, O. Antropov, M. Rautiainen, L. Sirro, S. Bounpone (2013)
Improved Mapping of Tropical Forests With Optical and SAR Imagery, Part I: Forest Cover and Accuracy Assessment Using Multi-Resolution DataIEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 6
V. Sy, M. Herold, F. Achard, G. Asner, A. Held, J. Kellndorfer, J. Verbesselt (2012)
Multiple remote sensing data sources for REDD+ monitoring
D. Lu, P. Mausel, Eduardo Brondízio, E. Moran (2004)
Relationships between forest stand parameters and Landsat TM spectral responses in the Brazilian Amazon BasinForest Ecology and Management, 198
H. Suganuma, Y. Abe, M. Taniguchi, H. Tanouchi, H. Utsugi, T. Kojima, Koichi Yamada (2006)
Stand biomass estimation method by canopy coverage for application to remote sensing in an arid area of Western AustraliaForest Ecology and Management, 222
T. Tokola, Z. Hou (2012)
Alternative remote sensing materials and inventory strategies in tropical forest inventory - Case Lao PDR Materiais alternativos de sensoriamento remoto e estratégias de inventário no inventário de florestas tropicais – Caso Lao PDR, 8
P. Olofsson, G. Foody, M. Herold, S. Stehman, C. Woodcock, M. Wulder (2014)
Good practices for estimating area and assessing accuracy of land changeRemote Sensing of Environment, 148
R. Nelson, P. Hyde, P. Johnson, Bomono Emessiene, M. Imhoff, R. Campbell, Wilson Edwards (2007)
Investigating RaDAR–LiDAR synergy in a North Carolina pine forestRemote Sensing of Environment, 110
M. Dalponte, L. Bruzzone, D. Gianelle (2012)
Tree species classification in the Southern Alps based on the fusion of very high geometrical resolution multispectral/hyperspectral images and LiDAR dataRemote Sensing of Environment, 123
M. Karjalainen, V. Kankare, M. Vastaranta, M. Holopainen, J. Hyyppä (2012)
Prediction of plot-level forest variables using TerraSAR-X stereo SAR dataRemote Sensing of Environment, 117
J. McKean, J. Roering (2004)
Objective landslide detection and surface morphology mapping using high-resolution airborne laser altimetryGeomorphology, 57
M. Phua, H. Saito (2003)
Estimation of biomass of a mountainous tropical forest using Landsat TM dataCanadian Journal of Remote Sensing, 29
E. Tomppo, T. Gschwantner, M. Lawrence, R. McRoberts (2010)
Comprar National Forest Inventories · Pathways for Common Reporting | Tomppo, Erkki | 9789048132324 | Springer
Z. Hou, Qing Xu, T. Nuutinen, T. Tokola (2013)
Extraction of remote sensing-based forest management units in tropical forestsRemote Sensing of Environment, 130
M. Maltamo, E. Næsset, J. Vauhkonen (2014)
Forestry Applications of Airborne Laser Scanning
G. Stewart, A. Pullin, C. Coles (2007)
Poor evidence-base for assessment of windfarm impacts on birdsEnvironmental Conservation, 34
P. Pant, V. Heikkinen, A. Hovi, I. Korpela, M. Hauta-Kasari, T. Tokola (2013)
Evaluation of simulated bands in airborne optical sensors for tree species identificationRemote Sensing of Environment, 138
F. Achard, R. Beuchle, P. Mayaux, H. Stibig, Catherine Bodart, A. Brink, S. Carboni, B. Desclée, Francois Donnay, H. Eva, A. Lupi, R. Rasi, R. Seliger, D. Simonetti (2014)
Determination of tropical deforestation rates and related carbon losses from 1990 to 2010Global Change Biology, 20
Z. Hou, Z. Hou, Qing Xu, T. Tokola (2011)
Use of ALS, Airborne CIR and ALOS AVNIR-2 data for estimating tropical forest attributes in Lao PDRIsprs Journal of Photogrammetry and Remote Sensing, 66
R. DeFries, F. Achard, Sandra Brown, M. Herold, D. Murdiyarso, B. Schlamadinger, C. Souza (2007)
Earth observations for estimating greenhouse gas emissions from deforestation in developing countriesEnvironmental Science & Policy, 10
G. Asner, M. Keller, Rodrigo Pereira, J. Zweede (2002)
Remote sensing of selective logging in Amazonia: Assessing limitations based on detailed field observations, Landsat ETM+, and textural analysisRemote Sensing of Environment, 80
R. Houghton, K. Lawrence, J. Hackler, Sandra Brown (2001)
The spatial distribution of forest biomass in the Brazilian Amazon: a comparison of estimatesGlobal Change Biology, 7
M. Henry, N. Picard, C. Trotta, R. Manlay, R. Valentini, M. Bernoux, L. Saint-André (2011)
Estimating tree biomass of sub-Saharan African forests: a review of available allometric equations.Silva Fennica, 45
M. Steininger, F. Godoy, G. Harper (2009)
Effects of systematic sampling on satellite estimates of deforestation ratesEnvironmental Research Letters, 4
S. Saatchi, R. Houghton, R. Alvalá, J. Soares, Yifan Yu (2007)
Distribution of aboveground live biomass in the Amazon basinGlobal Change Biology, 13
M. Steininger (2000)
Satellite estimation of tropical secondary forest above-ground biomass: Data from Brazil and BoliviaInternational Journal of Remote Sensing, 21
S. Saatchi, N. Harris, Sandra Brown, M. Lefsky, E. Mitchard, W. Salas, B. Zutta, W. Buermann, S. Lewis, S. Hagen, Silvia Petrova, L. White, M. Silman, A. Morel (2011)
Benchmark map of forest carbon stocks in tropical regions across three continentsProceedings of the National Academy of Sciences, 108
Johannes Rahlf, J. Breidenbach, S. Solberg, E. Næsset, R. Astrup (2014)
Comparison of four types of 3D data for timber volume estimationRemote Sensing of Environment, 155
Chengquan Huang, Sunghee Kim, Kuan Song, J. Townshend, P. Davis, A. Altstatt, O. Rodas, A. Yanosky, R. Clay, C. Tucker, J. Musinsky (2009)
Assessment of Paraguay's forest cover change using Landsat observationsGlobal and Planetary Change, 67
G. Asner, J. Mascaro (2014)
Mapping tropical forest carbon: Calibrating plot estimates to a simple LiDAR metricRemote Sensing of Environment, 140
G. Gutman, Raymond Byrnes, J. Masek, S. Covington, C. Justice, S. Franks, R. Headley (2008)
Towards monitoring land-cover and land-use changes at a global scale: the global land survey 2005Photogrammetric Engineering and Remote Sensing, 74
A. Newell, H. Simon (1961)
Computer simulation of human thinking.Science, 134 3495
G. Foody, D. Boyd, M. Cutler (2003)
Predictive relations of tropical forest biomass from Landsat TM data and their transferability between regionsRemote Sensing of Environment, 85
M. Hansen, P. Potapov, R. Moore, Matt Hancher, S. Turubanova, A. Tyukavina, D. Thau, S. Stehman, S. Goetz, T. Loveland, A. Kommareddy, A. Egorov, L. Chini, C. Justice, J. Townshend (2013)
High-Resolution Global Maps of 21st-Century Forest Cover ChangeScience, 342
L. Morales-Barquero, M. Skutsch, E. Jardel-Peláez, A. Ghilardi, C. Kleinn, J. Healey (2014)
Operationalizing the Definition of Forest Degradation for REDD+, with Application to MexicoForests, 5
B. DeVries, J. Verbesselt, L. Kooistra, M. Herold (2015)
Robust monitoring of small-scale forest disturbances in a tropical montane forest using Landsat time seriesRemote Sensing of Environment, 161
J. Anaya, E. Chuvieco, A. Palacios-Orueta (2009)
Aboveground biomass assessment in Colombia: a remote sensing approach.Forest Ecology and Management, 257
T. Tokola (2004)
LANDSCAPE AND PLANNING | Spatial Information
M. d'Oliveira, S. Reutebuch, R. McGaughey, H. Andersen (2012)
Estimating forest biomass and identifying low-intensity logging areas using airborne scanning lidar in Antimary State Forest, Acre State, Western Brazilian AmazonRemote Sensing of Environment, 124
P. Potapov, S. Turubanova, M. Hansen, B. Adusei, M. Broich, A. Altstatt, L. Mane, C. Justice (2012)
Quantifying forest cover loss in Democratic Republic of the Congo, 2000–2010, with Landsat ETM + dataRemote Sensing of Environment, 122
R. McRoberts (2010)
Probability- and model-based approaches to inference for proportion forest using satellite imagery as ancillary dataRemote Sensing of Environment, 114
R. Rasi, Catherine Bodart, H. Stibig, H. Eva, R. Beuchle, S. Carboni, D. Simonetti, F. Achard (2011)
An automated approach for segmenting and classifying a large sample of multi-date Landsat imagery for pan-tropical forest monitoringRemote Sensing of Environment, 115
G. Asner, J. Mascaro, H. Muller‐Landau, G. Vieilledent, Romuald Vaudry, M. Rasamoelina, Jefferson Hall, M. Breugel (2011)
A universal airborne LiDAR approach for tropical forest carbon mappingOecologia, 168
R. McRoberts (2011)
Satellite image-based maps: Scientific inference or pretty pictures?Remote Sensing of Environment, 115
M. Clark, D. Roberts, D. Clark (2005)
Hyperspectral discrimination of tropical rain forest tree species at leaf to crown scalesRemote Sensing of Environment, 96
G. Asner, D. Knapp, A. Balaji, Guayana Páez-Acosta (2009)
Automated mapping of tropical deforestation and forest degradation: CLASliteJournal of Applied Remote Sensing, 3
C. Grinand, Fety Rakotomalala, V. Gond, Romuald Vaudry, M. Bernoux, G. Vieilledent (2013)
Estimating deforestation in tropical humid and dry forests in Madagascar from 2000 to 2010 using multi-date Landsat satellite images and the random forests classifierRemote Sensing of Environment, 139
M. Friedl, D. McIver, J. Hodges, Xiaohe Zhang, D. Muchoney, A. Strahler, C. Woodcock, S. Gopal, A. Schneider, A. Cooper, A. Baccini, F. Gao, C. Schaaf (2002)
Global land cover mapping from MODIS: algorithms and early resultsRemote Sensing of Environment, 83
R. McRoberts, E. Næsset, T. Gobakken (2014)
Estimation for inaccessible, non-sampled forest areas using model-based inference and remotely sensed auxiliary information
G. Asner (2009)
Tropical forest carbon assessment: integrating satellite and airborne mapping approachesEnvironmental Research Letters, 4
T. Häme, Y. Rauste, O. Antropov, H. Ahola, J. Kilpi (2013)
Improved Mapping of Tropical Forests With Optical and SAR Imagery, Part II: Above Ground Biomass EstimationIEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 6
L. Korhonen, Daniela Ali-Sisto, T. Tokola (2015)
Tropical forest canopy cover estimation using satellite imagery and airborne lidar reference dataSilva Fennica, 49
R. McRoberts, E. Næsset, T. Gobakken (2015)
Optimizing the k-Nearest Neighbors technique for estimating forest aboveground biomass using airborne laser scanning dataRemote Sensing of Environment, 163
A. Tewkesbury, A. Comber, N. Tate, A. Lamb, P. Fisher (2015)
A critical synthesis of remotely sensed optical image change detection techniquesRemote Sensing of Environment, 160
S. Zolkos, S. Goetz, R. Dubayah (2013)
A meta-analysis of terrestrial aboveground biomass estimation using lidar remote sensingRemote Sensing of Environment, 128
E. Næsset (2002)
Predicting forest stand characteristics with airborne scanning laser using a practical two-stage procedure and field dataRemote Sensing of Environment, 80
The Tier approach introduced by the ntergovernmental Panel on Climate Change (IPCC) has been used to describe levels of methodological quality and complexity in the measurement reporting and verification (MRV) assessment system. Although guidelines do not explicitly state accuracy requirements, it has been asserted in previous studies that remote sensing missions should entail biomass errors that remain within 20 % of stand level estimates. The biomass of the target forest can be almost directly measured using LiDAR techniques when other sensors have rather low capacity to penetrate through canopy and response signals are not too noisy to detect changes in closed forests. Optical or radar satellite data, in relative terms, are only a tenth of the price of LiDAR. Taking into account cost-effectiveness within a tropical context, it is proposed that Landsat-like data can be useful for obtaining land cover and economical estimates for large areas. Typically, the role of airborne LiDAR is to provide ground truth type of information covering large areas. The reducing emissions from deforestation and forest degradation measurement, reporting and verification (REDD MRV) will need good ground sample for basal area and canopy cover change detection. LiDAR will be also feasible for forest management planning maps and planning operational REDD activities, but cost-effective mapping of carbon stocks for regional- and national-scale assessments will rely on a combination of satellite imagery and ground-based inventory samples. The distribution of tree species and different forest types need to be measured from the field and information can be generalised using satellite data with 1–30-m resolution. The global scale maps with the ground resolution 100 m–1 km are mainly for visualisation purposes and can be used to extrapolate distribution of information collected by 1–30-m remote sensing sensors and field plots.
Current Forestry Reports – Springer Journals
Published: Oct 13, 2015
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.