Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Remote sensing of aerosols due to biomass burning over Kanpur, Sao-Paulo, Ilorin and Canberra

Remote sensing of aerosols due to biomass burning over Kanpur, Sao-Paulo, Ilorin and Canberra Aerosol affect the climate in number of ways. In order to investigate these effects, we need a deep insight into aerosols optical, physical and radiative properties. So, to understand aerosols climatology, we investigate the properties of aerosols such as aerosol optical depth (AOD) (500 nm), Angstrom exponent (AE) (440–870 nm), single scattering albedo (SSA), refractive index (RI) and aerosols radiative forcing (ARF). For this purpose, we select four different AErosol RObotic NETwork (AERONET) sites located in four different continents; Kanpur, (India) Asia, Sao-Paulo, (Brazil) Southern America, IIorin, (Nigeria) Africa and Canberra, Australia. High AOD and AE is found (AOD = 0.90, AE = 1.31) in November at Kanpur and in September (AOD = 0.39, AE = 1.48) at Sao-Paulo. High AOD (1.06 and 1.12) over IIorin in January and February is found because of fog and haze. SSA shows decreasing trend with increasing wavelengths having minimum value (0.88 and 0.78 at 1020 nm) during the months of DJF and SON over Sao-Paulo and Canberra respectively. The highest value of SSA (~ 0.96) is found during the months of MAM over IIorin because of presence of coarse aerosols. The low value of SSA over Kanpur during DJF months shows dominance of fine urban/ biomass burning aerosols. Based on the values of AOD, AE and SSA, Canberra is the most pristine site. The estimated ARF values indicate that Kanpur and Ilorin sites exhibit higher TOA and BOA values as compared to Sao-Paulo. ARF at ATM is observed to be 7.4 Wm−2 higher during JJA months and 10.1 Wm−2 during SON months than MAM months over Kanpur. We have also observed lowest ARF efficiency (FeffBOA) of − 181 Wm−2 AOD−1550 nm during MAM months for Sao-Paulo while the highest value of − 297 Wm−2 AOD−1550 nm is observed during DJF months for Kanpur. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Atmospheric Chemistry Springer Journals

Remote sensing of aerosols due to biomass burning over Kanpur, Sao-Paulo, Ilorin and Canberra

Loading next page...
 
/lp/springer-journals/remote-sensing-of-aerosols-due-to-biomass-burning-over-kanpur-sao-o70XMaVk03
Publisher
Springer Journals
Copyright
Copyright © The Author(s), under exclusive licence to Springer Nature B.V. 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
ISSN
0167-7764
eISSN
1573-0662
DOI
10.1007/s10874-022-09444-1
Publisher site
See Article on Publisher Site

Abstract

Aerosol affect the climate in number of ways. In order to investigate these effects, we need a deep insight into aerosols optical, physical and radiative properties. So, to understand aerosols climatology, we investigate the properties of aerosols such as aerosol optical depth (AOD) (500 nm), Angstrom exponent (AE) (440–870 nm), single scattering albedo (SSA), refractive index (RI) and aerosols radiative forcing (ARF). For this purpose, we select four different AErosol RObotic NETwork (AERONET) sites located in four different continents; Kanpur, (India) Asia, Sao-Paulo, (Brazil) Southern America, IIorin, (Nigeria) Africa and Canberra, Australia. High AOD and AE is found (AOD = 0.90, AE = 1.31) in November at Kanpur and in September (AOD = 0.39, AE = 1.48) at Sao-Paulo. High AOD (1.06 and 1.12) over IIorin in January and February is found because of fog and haze. SSA shows decreasing trend with increasing wavelengths having minimum value (0.88 and 0.78 at 1020 nm) during the months of DJF and SON over Sao-Paulo and Canberra respectively. The highest value of SSA (~ 0.96) is found during the months of MAM over IIorin because of presence of coarse aerosols. The low value of SSA over Kanpur during DJF months shows dominance of fine urban/ biomass burning aerosols. Based on the values of AOD, AE and SSA, Canberra is the most pristine site. The estimated ARF values indicate that Kanpur and Ilorin sites exhibit higher TOA and BOA values as compared to Sao-Paulo. ARF at ATM is observed to be 7.4 Wm−2 higher during JJA months and 10.1 Wm−2 during SON months than MAM months over Kanpur. We have also observed lowest ARF efficiency (FeffBOA) of − 181 Wm−2 AOD−1550 nm during MAM months for Sao-Paulo while the highest value of − 297 Wm−2 AOD−1550 nm is observed during DJF months for Kanpur.

Journal

Journal of Atmospheric ChemistrySpringer Journals

Published: Mar 1, 2023

Keywords: Air pollution; Biomass burning; Remote sensing; Continents

References