Access the full text.
Sign up today, get an introductory month for just $19.
Sanjeena Subedi, A. Punzo, S. Ingrassia, P. McNicholas (2015)
Cluster-weighted $$t$$t-factor analyzers for robust model-based clustering and dimension reductionStatistical Methods & Applications, 24
M. Stephens (2000)
Dealing with label switching in mixture modelsJournal of the Royal Statistical Society: Series B (Statistical Methodology), 62
A. Punzo, R. Browne, P. McNicholas (2016)
Hypothesis Testing for Mixture Model SelectionJournal of Statistical Computation and Simulation, 86
D. Burkholder, I. Olkin, S. Ghurye, W. Hoeffding, W. Madow, H. Mann (1962)
Contributions to Probability and Statistics: Essays in Honor of Harold Hotelling.Journal of the American Statistical Association, 57
GJ MCLACHLAN, D Peel (2000)
Finite Mixture Models
A. Dempster, N. Laird, D. Rubin (1977)
Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper
A. Punzo, P. McNicholas (2013)
Parsimonious mixtures of multivariate contaminated normal distributionsBiometrical Journal, 58
D. Titterington, A. Smith, U. Makov (1986)
Statistical analysis of finite mixture distributions
Maurizio Vichi (2011)
Studies in Classification Data Analysis and knowledge Organization
W. DeSarbo, W. Cron (1988)
A maximum likelihood methodology for clusterwise linear regressionJournal of Classification, 5
(2013)
On the Use of the Generalized Linear Exponential Cluster-WeightedModel to Assess Local Linear Independence in Bivariate Data
S. Ingrassia, A. Punzo, G. Vittadini, S. Minotti (2015)
The Generalized Linear Mixed Cluster-Weighted ModelJournal of Classification, 32
A. Mazza, A. Punzo, S. Ingrassia (2018)
flexCWM: A Flexible Framework for Cluster-Weighted ModelsJournal of Statistical Software, 86
G. Ritter (2014)
Robust Cluster Analysis and Variable Selection
A. Punzo, A. Maruotti (2016)
Clustering Multivariate Longitudinal Observations: The Contaminated Gaussian Hidden Markov ModelJournal of Computational and Graphical Statistics, 25
G. Celeux, G. Govaert (1995)
Gaussian parsimonious clustering modelsPattern Recognit., 28
A. Punzo, S. Ingrassia (2016)
Clustering bivariate mixed-type data via the cluster-weighted modelComputational Statistics, 31
K. Lange, R. Little, Jeremy Taylor (1989)
Robust Statistical Modeling Using the t DistributionJournal of the American Statistical Association, 84
M. Wedel (2002)
Concomitant variables in finite mixture modelsStatistica Neerlandica, 56
D. Karlis, E. Xekalaki (2003)
Choosing Initial Values for the EM Algorithm for Finite Mixtures
A. Punzo, S. Ingrassia (2015)
Parsimonious Generalized Linear Gaussian Cluster-Weighted Models
J. Hartigan (1985)
Statistical theory in clusteringJournal of Classification, 2
J. Tukey (1960)
A survey of sampling from contaminated distributions
(2017)
2017),“Mixtures of Multivariate Contaminated Normal Regression Models”, Statistical Papers, submitted
A. Maruotti, A. Punzo (2017)
Model-based time-varying clustering of multivariate longitudinal data with covariates and outliersComput. Stat. Data Anal., 113
P. McNicholas, T. Murphy, Aaron McDaid, Dermot Frost (2010)
Serial and parallel implementations of model-based clustering via parsimonious Gaussian mixture modelsComput. Stat. Data Anal., 54
S. Aelst, Xiaogang Wang, R. Zamar, Rong Zhu (2006)
Linear grouping using orthogonal regressionComput. Stat. Data Anal., 50
G. Celeux, M. Hurn, C. Robert (2000)
Computational and Inferential Difficulties with Mixture Posterior DistributionsJournal of the American Statistical Association, 95
(2017)
The Multivariate LeptokurticNormal Distribution and Its Application inModel-Based Clustering
J. Park (2000)
The Identification Of Multiple Outliers
S. Ingrassia, S. Minotti, A. Punzo (2012)
Model-based clustering via linear cluster-weighted modelsComput. Stat. Data Anal., 71
Xiuqin Bai, W. Yao, J. Boyer (2012)
Robust fitting of mixture regression modelsComput. Stat. Data Anal., 56
A PUNZO, S INGRASSIA (2015)
Advances in Statistical Models for Data Analysis. Studies in Classification, Data Analysis and Knowledge Organization
S. Ingrassia, A. Punzo (2016)
Decision boundaries for mixtures of regressionsJournal of The Korean Statistical Society, 45
U. Dang, A. Punzo, P. McNicholas, S. Ingrassia, R. Browne (2014)
Multivariate Response and Parsimony for Gaussian Cluster-Weighted ModelsJournal of Classification, 34
Weixing Song, W. Yao, Y. Xing (2014)
Robust mixture regression model fitting by Laplace distributionComput. Stat. Data Anal., 71
C. Fraley, A. Raftery (2012)
mclust Version 4 for R : Normal Mixture Modeling for Model-Based Clustering , Classification , and Density Estimation
R. Browne, Sanjeena Subedi, P. McNicholas (2013)
Constrained Optimization for a Subset of the Gaussian Parsimonious Clustering ModelsarXiv: Computation
J. Banfield, A. Raftery (1993)
Model-based Gaussian and non-Gaussian clusteringBiometrics, 49
Sanjeena Subedi, A. Punzo, S. Ingrassia, P. McNicholas (2012)
Clustering and classification via cluster-weighted factor analyzersAdvances in Data Analysis and Classification, 7
A. Punzo, A. Mazza, P. McNicholas (2016)
ContaminatedMixt: An R Package for Fitting Parsimonious Mixtures of Multivariate Contaminated Normal DistributionsarXiv: Computation
H LÜTKEPOHL (1996)
Handbook of Matrices
N. Gershenfeld (1997)
Nonlinear Inference and Cluster‐Weighted ModelingAnnals of the New York Academy of Sciences, 808
N. Neykov, P. Filzmoser, R. Dimova, P. Neytchev (2007)
Robust fitting of mixtures using the trimmed likelihood estimatorComput. Stat. Data Anal., 52
A. Aitken
III.—A Series Formula for the Roots of Algebraic and Transcendental Equations, 45
S. Ingrassia, S. Minotti, G. Vittadini (2012)
Local Statistical Modeling via a Cluster-Weighted Approach with Elliptical DistributionsJournal of Classification, 29
L. García-Escudero, A. Gordaliza, A. Mayo-Íscar, R. Martin (2010)
Robust clusterwise linear regression through trimmingComput. Stat. Data Anal., 54
G. Schwarz (1978)
Estimating the Dimension of a ModelAnnals of Statistics, 6
P. Rousseeuw, K. Driessen (1999)
A Fast Algorithm for the Minimum Covariance Determinant EstimatorTechnometrics, 41
C. Biernacki, G. Celeux, G. Govaert (2003)
Choosing starting values for the EM algorithm for getting the highest likelihood in multivariate Gaussian mixture modelsComput. Stat. Data Anal., 41
(2012)
Tools for Linear Grouping Analysis (LGA)
(1996)
Handbook of Matrices, Chicester: Wiley
R. Little (1988)
Robust Estimation of the Mean and Covariance Matrix from Data with Missing ValuesJournal of The Royal Statistical Society Series C-applied Statistics, 37
G. Galimberti, Gabriele Soffritti (2014)
A multivariate linear regression analysis using finite mixtures of t distributionsComput. Stat. Data Anal., 71
X. Meng, D. Rubin (1993)
Maximum likelihood estimation via the ECM algorithm: A general frameworkBiometrika, 80
G. McLachlan, K. Basford (1989)
Mixture models : inference and applications to clustering, 84
A PUNZO (2014)
Flexible Mixture Modeling with the Polynomial Gaussian Cluster-Weighted ModelStatistical Modelling, 14
P. McNicholas (2016)
Mixture Model-Based Classification
J. Cuesta-Albertos, A. Gordaliza, C. Matrán (1997)
Trimmed $k$-means: an attempt to robustify quantizersAnnals of Statistics, 25
W. Yao, Yan Wei, Chun Yu (2014)
Robust mixture regression using the t-distributionComput. Stat. Data Anal., 71
S. Ingrassia (2004)
A likelihood-based constrained algorithm for multivariate normal mixture modelsStatistical Methods and Applications, 13
A. Punzo, P. McNicholas (2014)
Robust High-Dimensional Modeling with the Contaminated Gaussian DistributionarXiv: Methodology
W. Yao, B. Lindsay (2009)
Bayesian Mixture Labeling by Highest Posterior DensityJournal of the American Statistical Association, 104
A DEMPSTER, N LAIRD, D RUBIN (1977)
Maximum Likelihood from Incomplete Data via the EM AlgorithmJournal of the Royal Statistical Society: Series B (Statistical Methodology), 39
L. García-Escudero, A. Gordaliza, R. Martin, S. Aelst, R. Zamar (2009)
Robust linear clusteringJournal of the Royal Statistical Society: Series B (Statistical Methodology), 71
C. Hennig (2000)
Identifiablity of Models for Clusterwise Linear RegressionJournal of Classification, 17
(1997)
Multivariate Analysis, Probability and Mathematical Statistics, London
D. Böhning, E. Dietz, Rainer Schaub, P. Schlattmann, B. Lindsay (1994)
The distribution of the likelihood ratio for mixtures of densities from the one-parameter exponential familyAnnals of the Institute of Statistical Mathematics, 46
S. Frühwirth-Schnatter (2006)
Finite Mixture and Markov Switching Models
M. Aitkin, G. Wilson (1980)
Mixture Models, Outliers, and the EM AlgorithmTechnometrics, 22
S. Ingrassia, R. Rocci (2007)
Constrained monotone EM algorithms for finite mixture of multivariate GaussiansComput. Stat. Data Anal., 51
C. Hennig (2002)
Fixed Point Clusters for Linear Regression: Computation and ComparisonJournal of Classification, 19
(2012)
lga: “Tools for Linear Grouping Analysis (LGA)”, R package version 1.1-1, available at https://cran.r-project.org/web/packages/lga/index.html
L. Bagnato, A. Punzo (2013)
Finite mixtures of unimodal beta and gamma densities and the $$k$$-bumps algorithmComputational Statistics, 28
Maia Berkane, P. Bentler (1988)
Estimation of Contamination Parameters and Identification of Outliers in Multivariate DataSociological Methods & Research, 17
C. Hennig (2004)
Breakdown points for maximum likelihood estimators of location–scale mixturesAnnals of Statistics, 32
P. Berta, S. Ingrassia, A. Punzo, G. Vittadini (2016)
Multilevel cluster-weighted models for the evaluation of hospitalsMETRON, 74
W. Yao (2012)
Model based labeling for mixture modelsStatistics and Computing, 22
P. Rousseeuw, B. Zomeren (1990)
Unmasking Multivariate Outliers and Leverage PointsJournal of the American Statistical Association, 85
Byungtae Seo, Daeyoung Kim (2012)
Root selection in normal mixture modelsComput. Stat. Data Anal., 56
P. Rousseeuw, A. Leroy (2005)
Robust Regression and Outlier Detection
E. Sánchez-Manzano, M. Gómez-Villegas, Juan-Miguel Marín-Diazaraque (2002)
A MATRIX VARIATE GENERALIZATION OF THE POWER EXPONENTIAL FAMILY OF DISTRIBUTIONSCommunications in Statistics - Theory and Methods, 31
The Gaussian cluster-weighted model (CWM) is a mixture of regression models with random covariates that allows for flexible clustering of a random vector composed of response variables and covariates. In each mixture component, a Gaussian distribution is adopted for both the covariates and the responses given the covariates. To make the approach robust with respect to the presence of mildly atypical observations, the contaminated Gaussian CWM is introduced. In addition to the parameters of the Gaussian CWM, each mixture component has a parameter controlling the proportion of outliers, one controlling the proportion of leverage points, one specifying the degree of contamination with respect to the response variables, and another specifying the degree of contamination with respect to the covariates. Crucially, these parameters do not have to be specified a priori, adding flexibility to the approach. Furthermore, once the model is estimated and the observations are assigned to the components, a finer intra-group classification in typical points, (mild) outliers, good leverage points, and bad leverage points—concepts of primary importance in robust regression analysis—can be directly obtained. Relations with other mixture-based contaminated models are analyzed, identifiability conditions are provided, an expectation-conditional maximization algorithm is outlined for parameter estimation, and various implementation and operational issues are discussed. Properties of the estimators of the regression coefficients are evaluated through Monte Carlo experiments and compared with other procedures. A sensitivity study is also conducted based on a real data set.
Journal of Classification – Springer Journals
Published: Jun 20, 2017
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get an introductory month for just $19.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.