Access the full text.
Sign up today, get DeepDyve free for 14 days.
The paper deals with robust filtering algorithms for discrete systems with unknown inputs (disturbances) and Markovian jump parameter. The proposed filtering algorithm is based on the separation principle, minimization of a quadratic criterion and the use of Kalman filters with unknown input and smoothing procedures. Solving a non-stationary problem is represented solving a two-point boundary value problem in kind of difference matrix equations. In the stationary case problem is represented matrix algebraic equations. Robustness ensures the stability of the filter dynamics when errors occur in identifying the jump parameter. An example is provided to illustrate the proposed approach, which showed that the use of smoothing procedures for estimating an unknown input improves the accuracy of estimates.
Automatic Control and Computer Sciences – Springer Journals
Published: Jan 26, 2020
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.