# Root number in integer parameter families of elliptic curves

Root number in integer parameter families of elliptic curves In a previous article [7], the author proves that the value of the root number varies in a non-isotrivial family of elliptic curves indexed by one parameter t running through Q\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$${\mathbb {Q}}$$\end{document}. However, a well-known example of Washington has root number -1\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$-1$$\end{document} for every fiber when t runs through Z\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$${\mathbb {Z}}$$\end{document}. Such examples are rare since, as proven in this paper, the root number of the integer fibers varies for a large class of families of elliptic curves. This result depends on the squarefree conjecture and Chowla’s conjecture, and is unconditional in many cases. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Annales mathématiques du Québec Springer Journals

# Root number in integer parameter families of elliptic curves

, Volume 47 (2): 21 – Oct 1, 2023
21 pages

/lp/springer-journals/root-number-in-integer-parameter-families-of-elliptic-curves-0iv0LVWxRf

# References (28)

Publisher
Springer Journals
ISSN
2195-4755
eISSN
2195-4763
DOI
10.1007/s40316-021-00164-8
Publisher site
See Article on Publisher Site

### Abstract

In a previous article [7], the author proves that the value of the root number varies in a non-isotrivial family of elliptic curves indexed by one parameter t running through Q\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$${\mathbb {Q}}$$\end{document}. However, a well-known example of Washington has root number -1\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$-1$$\end{document} for every fiber when t runs through Z\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$${\mathbb {Z}}$$\end{document}. Such examples are rare since, as proven in this paper, the root number of the integer fibers varies for a large class of families of elliptic curves. This result depends on the squarefree conjecture and Chowla’s conjecture, and is unconditional in many cases.

### Journal

Annales mathématiques du QuébecSpringer Journals

Published: Oct 1, 2023

Keywords: elliptic curves; rank; root number; 11G05; 11G40

### There are no references for this article.

Access the full text.

Sign up today, get DeepDyve free for 14 days.