Access the full text.
Sign up today, get DeepDyve free for 14 days.
A. Sinha, Danish Equbal (2018)
Thiol−Ene Reaction: Synthetic Aspects and Mechanistic Studies of an Anti-Markovnikov-Selective Hydrothiolation of OlefinsAsian Journal of Organic Chemistry
Linlin Zhang, Daizong Lin, Xinyuanyuan Sun, U. Curth, C. Drosten, Lucie Sauerhering, S. Becker, K. Rox, R. Hilgenfeld (2020)
Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitorsScience (New York, N.y.), 368
Linlin Zhang, Daizong Lin, Y. Kusov, Yong Nian, Q. Ma, Jiang Wang, A. Brunn, P. Leyssen, Kristina Lanko, J. Neyts, Adriaan Wilde, E. Snijder, Hong Liu, R. Hilgenfeld (2020)
α-Ketoamides as Broad-Spectrum Inhibitors of Coronavirus and Enterovirus Replication: Structure-Based Design, Synthesis, and Activity AssessmentJournal of Medicinal Chemistry
H. Ali, Isra Ali (2017)
A DFT and QSAR study of the role of hydroxyl group, charge and unpaired-electron distribution in anthocyanidin radical stabilization and antioxidant activityMedicinal Chemistry Research, 26
shaghaghi eda (2020)
Molecular Docking Study of Novel COVID-19 Protease with Low Risk Terpenoides Compounds of Plants
(ul Qamar MT, Alqahtani SM, Alamri M, Chen L-L. (2020) Structural basis of SARS-CoV-2 3CLpro and anti-COVID-19 drug discovery from medicinal plants. J Pharm Anal. Doi:10.1016/j.jpha.2020.03.009)
ul Qamar MT, Alqahtani SM, Alamri M, Chen L-L. (2020) Structural basis of SARS-CoV-2 3CLpro and anti-COVID-19 drug discovery from medicinal plants. J Pharm Anal. Doi:10.1016/j.jpha.2020.03.009ul Qamar MT, Alqahtani SM, Alamri M, Chen L-L. (2020) Structural basis of SARS-CoV-2 3CLpro and anti-COVID-19 drug discovery from medicinal plants. J Pharm Anal. Doi:10.1016/j.jpha.2020.03.009, ul Qamar MT, Alqahtani SM, Alamri M, Chen L-L. (2020) Structural basis of SARS-CoV-2 3CLpro and anti-COVID-19 drug discovery from medicinal plants. J Pharm Anal. Doi:10.1016/j.jpha.2020.03.009
(COVID-19 Weekly Epidemiological Update 10:00 am CET 27 December 2020. https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports)
COVID-19 Weekly Epidemiological Update 10:00 am CET 27 December 2020. https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reportsCOVID-19 Weekly Epidemiological Update 10:00 am CET 27 December 2020. https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports, COVID-19 Weekly Epidemiological Update 10:00 am CET 27 December 2020. https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports
M. Mirza, M. Froeyen (2020)
Structural elucidation of SARS-CoV-2 vital proteins: Computational methods reveal potential drug candidates against main protease, Nsp12 polymerase and Nsp13 helicaseJournal of Pharmaceutical Analysis, 10
Zhenming Jin, Xiaoyu Du, Yechun Xu, Yongqiang Deng, Meiqin Liu, Yao Zhao, Bing Zhang, Xiaofeng Li, Lei-ke Zhang, Chao Peng, Yinkai Duan, Jing Yu, Lin Wang, Kailin Yang, Fengjiang Liu, Ren-di Jiang, Xinglou Yang, Tian You, Xiaoce Liu, Xiuna Yang, Fang Bai, Hong Liu, Xiang Liu, L. Guddat, Wenqing Xu, Gengfu Xiao, C. Qin, Z. Shí, Hualiang Jiang, Z. Rao, Haitao Yang (2020)
Structure of Mpro from COVID-19 virus and discovery of its inhibitorsbioRxiv
Yu. Borisov, A. Dyusengaliev, K. Dyusengaliev, T. Serikov (2008)
The electrophilic addition of thiols to olefins: A theoretical and experimental studyRussian Journal of Physical Chemistry A, Focus on Chemistry, 82
(Yang H, Xie W, Xue X (2005) Design of wide-spectrum inhibitors targeting coronavirus main proteases. PLoS Biol 3: e324. doi:10.1371/journal.pbio.0030324)
Yang H, Xie W, Xue X (2005) Design of wide-spectrum inhibitors targeting coronavirus main proteases. PLoS Biol 3: e324. doi:10.1371/journal.pbio.0030324Yang H, Xie W, Xue X (2005) Design of wide-spectrum inhibitors targeting coronavirus main proteases. PLoS Biol 3: e324. doi:10.1371/journal.pbio.0030324, Yang H, Xie W, Xue X (2005) Design of wide-spectrum inhibitors targeting coronavirus main proteases. PLoS Biol 3: e324. doi:10.1371/journal.pbio.0030324
Chia-Nan Chen, C. Lin, Kuo-Kuei Huang, Wei-Cheng Chen, H. Hsieh, P. Liang, J. Hsu (2005)
Inhibition of SARS-CoV 3C-like Protease Activity by Theaflavin-3,3′-digallate (TF3)Evidence-based Complementary and Alternative Medicine, 2
A. Kanhed, Dushyant Patel, Divya Teli, Nirav Patel, M. Chhabria, M. Yadav (2020)
Identification of potential Mpro inhibitors for the treatment of COVID-19 by using systematic virtual screening approachMolecular Diversity, 25
L. Michelle, Houston Simon, P. Helena, V. LithgowKaren, Hof Rebecca, Wetherell Charmaine, Kao Wei-Chien, Yi-Pin Lin, J. Tara, Ebady Rhodaba, E. CameronCaroline, J. BoulangerMartin (2016)
Data collection and refinement statistics.PLOS Pathogens
(Chem3D 18.0 User Guide (2018) PerkinElmer Informatics, Inc)
Chem3D 18.0 User Guide (2018) PerkinElmer Informatics, IncChem3D 18.0 User Guide (2018) PerkinElmer Informatics, Inc, Chem3D 18.0 User Guide (2018) PerkinElmer Informatics, Inc
Zhenming Jin, Xiaoyu Du, Yechun Xu, Yongqiang Deng, Meiqin Liu, Yao, Zhao, Bing Zhang, Xiaofeng Li, Lei-ke Zhang, Yinkai Duan, Jing Yu, Lin Wang, Kailin Yang, Fengjiang Liu, Tian You, Xiaoce Liu, Xiuna Yang, Fang Bai, Hong Liu, Xiang Liu, L. Guddat, Gengfu Xiao, C. Qin, Z. Shí, Hualiang, Jiang, Z. Rao, Haitao Yang (2020)
Structure-based drug design, virtual screening and high-throughput screening rapidly identify antiviral leads targeting COVID-19
L Zhang, D Lin, Y Kusov (2020)
α-Ketoamides as broad-spectrum inhibitors of coronavirus and enterovirus replication: structure-based design, synthesis, and activity assessmentJ Med Chem, 63
(Salentin S, Schreiber S, Haupt VJ, Adasme MF, Schroeder M (2015) PLIP: fully automated protein-ligand interaction profiler. Nucl Acids Res 43(W1): W443–W447. doi: 10.1093/nar/gkv315; https://projects.biotec.tu-dresden.de/plip-web/plip/index)
Salentin S, Schreiber S, Haupt VJ, Adasme MF, Schroeder M (2015) PLIP: fully automated protein-ligand interaction profiler. Nucl Acids Res 43(W1): W443–W447. doi: 10.1093/nar/gkv315; https://projects.biotec.tu-dresden.de/plip-web/plip/indexSalentin S, Schreiber S, Haupt VJ, Adasme MF, Schroeder M (2015) PLIP: fully automated protein-ligand interaction profiler. Nucl Acids Res 43(W1): W443–W447. doi: 10.1093/nar/gkv315; https://projects.biotec.tu-dresden.de/plip-web/plip/index, Salentin S, Schreiber S, Haupt VJ, Adasme MF, Schroeder M (2015) PLIP: fully automated protein-ligand interaction profiler. Nucl Acids Res 43(W1): W443–W447. doi: 10.1093/nar/gkv315; https://projects.biotec.tu-dresden.de/plip-web/plip/index
S. Günther, P. Reinke, Y. Fernández-García, J. Lieske, T. Lane, H. Ginn, F. Koua, C. Ehrt, W. Ewert, D. Oberthuer, O. Yefanov, S. Meier, K. Lorenzen, Boris Krichel, Janine-Denise Kopicki, L. Gelisio, W. Brehm, I. Dunkel, B. Seychell, H. Gieseler, B. Norton-Baker, B. Escudero-Pérez, M. Domaracky, S. Saouane, A. Tolstikova, T. White, Anna Hänle, M. Groessler, H. Fleckenstein, F. Trost, M. Galchenkova, Y. Gevorkov, Chufeng Li, S. Awel, A. Peck, M. Barthelmess, F. Schlünzen, P. Xavier, N. Werner, H. Andaleeb, N. Ullah, S. Falke, V. Srinivasan, B. França, M. Schwinzer, H. Brognaro, C. Rogers, D. Melo, Joanna Zaitseva-Doyle, J. Knoška, Gisel Peña-Murillo, A. Mashhour, V. Hennicke, P. Fischer, J. Hakanpää, J. Meyer, P. Gribbon, B. Ellinger, M. Kuzikov, M. Wolf, A. Beccari, G. Bourenkov, D. Stetten, G. Pompidor, I. Bento, S. Panneerselvam, I. Karpičs, T. Schneider, M. Garcia-Alai, S. Niebling, Christian Günther, C. Schmidt, R. Schubert, Huijong Han, J. Boger, Diana Monteiro, Linlin Zhang, Xinyuanyuan Sun, J. Pletzer-Zelgert, J. Wollenhaupt, C. Feiler, M. Weiss, E. Schulz, P. Mehrabi, Katarina Karničar, Aleksandra Usenik, J. Loboda, H. Tidow, A. Chari, R. Hilgenfeld, C. Uetrecht, R. Cox, A. Zaliani, T. Beck, M. Rarey, S. Günther, D. Turk, W. Hinrichs, H. Chapman, A. Pearson, C. Betzel, A. Meents (2021)
X-ray screening identifies active site and allosteric inhibitors of SARS-CoV-2 main proteaseScience (New York, N.y.), 372
Liying Dong, Shasha Hu, Jianjun Gao (2020)
Discovering drugs to treat coronavirus disease 2019 (COVID-19).Drug discoveries & therapeutics, 14 1
N Shaghaghi (2020)
Molecular docking study of novel COVID-19 protease with low risk terpenoides compounds of plantsChemRxiv
SAR and QSAR of COVID-19 Main Protease-Inhibitor Interactions of Recently X-ray Crystalized…
Vinay Kumar, K. Roy (2020)
Development of a simple, interpretable and easily transferable QSAR model for quick screening antiviral databases in search of novel 3C-like protease (3CLpro) enzyme inhibitors against SARS-CoV diseasesSAR and QSAR in Environmental Research, 31
Zhenming Jin, Xiaoyu Du, Yechun Xu, Yongqiang Deng, Meiqin Liu, Yao Zhao, Bing Zhang, Xiaofeng Li, Lei-ke Zhang, Chao Peng, Yinkai Duan, Jing Yu, Lin Wang, Kailin Yang, Fengjiang Liu, Ren-di Jiang, Xinglou Yang, Tian You, Xiaoce Liu, Xiuna Yang, Fang Bai, Hong Liu, Xiang Liu, L. Guddat, Wenqing Xu, Gengfu Xiao, C. Qin, Z. Shí, Hualiang Jiang, Z. Rao, Haitao Yang (2020)
Structure of Mpro from SARS-CoV-2 and discovery of its inhibitorsNature, 582
M. Kandeel, A. Ibrahim, M. Fayez, M. Al-Nazawi (2020)
From SARS and MERS CoVs to SARS‐CoV‐2: Moving toward more biased codon usage in viral structural and nonstructural genesJournal of Medical Virology, 92
J. Jiménez, M. Škalič, Gerard Martínez-Rosell, G. Fabritiis (2018)
KDEEP: Protein-Ligand Absolute Binding Affinity Prediction via 3D-Convolutional Neural NetworksJournal of chemical information and modeling, 58 2
Guangdi Li, E. Clercq (2020)
Therapeutic options for the 2019 novel coronavirus (2019-nCoV)Nature Reviews Drug Discovery, 19
Manli Wang, Ruiyuan Cao, Lei-ke Zhang, Xinglou Yang, Jia Liu, Mingyue Xu, Z. Shí, Zhìhóng Hú, Wu Zhong, Gengfu Xiao (2020)
Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitroCell Research, 30
(Jiménez J, Skalic M, Martinez-Rosell G, de Fabritiis G (2018) Protein-ligand absolute binding affinity prediction via 3D-convolutional neural networks. J Chem Inf Model 58: 287–296. doi: 10.1021/acs.jcim.7b00650. https://www.playmolecule.org/Kdeep/)
Jiménez J, Skalic M, Martinez-Rosell G, de Fabritiis G (2018) Protein-ligand absolute binding affinity prediction via 3D-convolutional neural networks. J Chem Inf Model 58: 287–296. doi: 10.1021/acs.jcim.7b00650. https://www.playmolecule.org/Kdeep/Jiménez J, Skalic M, Martinez-Rosell G, de Fabritiis G (2018) Protein-ligand absolute binding affinity prediction via 3D-convolutional neural networks. J Chem Inf Model 58: 287–296. doi: 10.1021/acs.jcim.7b00650. https://www.playmolecule.org/Kdeep/, Jiménez J, Skalic M, Martinez-Rosell G, de Fabritiis G (2018) Protein-ligand absolute binding affinity prediction via 3D-convolutional neural networks. J Chem Inf Model 58: 287–296. doi: 10.1021/acs.jcim.7b00650. https://www.playmolecule.org/Kdeep/
Wenhao Dai, Bing Zhang, Xiaming Jiang, H. Su, Jian Li, Yao Zhao, Xiong Xie, Zhenming Jin, Jingjing Peng, Fengjiang Liu, Chunpu Li, You Li, Fang Bai, Haofeng Wang, Xi Cheng, X. Cen, Shulei Hu, Xiuna Yang, Jiang Wang, Xiang Liu, Gengfu Xiao, Hualiang Jiang, Z. Rao, Lei-ke Zhang, Yechun Xu, Haitao Yang, Hong Liu (2020)
Structure-based design of antiviral drug candidates targeting the SARS-CoV-2 main proteaseScience (New York, N.y.)
Muhammad Qamar, Safar Alqahtani, M. Alamri, Lingling Chen (2020)
Structural basis of SARS-CoV-2 3CLpro and anti-COVID-19 drug discovery from medicinal plantsJournal of Pharmaceutical Analysis, 10
D. Mothay, K. Ramesh (2020)
Binding site analysis of potential protease inhibitors of COVID-19 using AutoDockVirusDisease, 31
Sebastian Salentin, Sven Schreiber, V. Haupt, Melissa Adasme, M. Schroeder (2015)
PLIP: fully automated protein–ligand interaction profilerNucleic Acids Research, 43
Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations
COVID-19 is still widespread worldwide and up to now there is no established antiviral able to control the disease. Main protease is responsible for the viral replication and transcription; thus, its inhibition is a promising route to control virus proliferation. The present study aims to examine detail interactions between main protease and recently reported ninety-seven inhibitors with available X-ray crystallography to define factors enhance inhibition activity; thirty-two of most potent inhibitors were examined to identify sites and types of interaction. The study showed formation of covalent bond, H-bond and hydrophobic interaction with key residues in the active side. Covalent bond is observed in seventeen complexes, all of them by attack of the 145Cys thiol group on Michael acceptor, aldehyde or its hydrate, α-ketoamide, double bond or acetamide methyl group; the latter type requires H-bonding between acetamide carbonyl oxygen and at least one of 143Gly, 144Ser or 145Cys. Potent inhibitors, disulfiram and ebselen docked in the same binding site. Accordingly, factors identify inhibition include forming covalent bond and existing terminal hydrophobic groups and amidic or peptidomimetic structure. Binding affinity was found correlated with topological diameter up to 24 bond, molecular size, branching, polar surface area up to 199 Å2 and hydrophilicity.
"Proceedings of the National Academy of Sciences, India Section B:Biological Sciences" – Springer Journals
Published: Jun 1, 2022
Keywords: COVID-19; SARS-CoV-2; Main protease; Protease inhibitors; Protease–inhibitor interactions; Inhibition mechanism
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.