Access the full text.
Sign up today, get DeepDyve free for 14 days.
O. Zografos, B. Sorée, A. Vaysset, S. Cosemans, L. Amarù, P. Gaillardon, G. Micheli, R. Lauwereins, S. Sayan, P. Raghavan, I. Radu, A. Thean (2015)
Design and benchmarking of hybrid CMOS-Spin Wave Device Circuits compared to 10nm CMOS2015 IEEE 15th International Conference on Nanotechnology (IEEE-NANO)
Cheng Cheng, V. Ivanovskaya, Juan Sanchez, B. Dlubak, P. Sénéor, Young Lee, G. Han, H. Kim, Heejun Yang, A. Anane (2015)
Direct observation of spin-to-charge conversion in MoS2 monolayer with spin pumpingBulletin of the American Physical Society, 2015
D. Hsieh, Y. Xia, D. Qian, L. Wray, J. Dil, F. Meier, J.Osterwalder, L. Patthey, J. Checkelsky, N. Ong, A. Fedorov, H. Lin, A. Bansil, D. Grauer, Y. Hor, R. Cava, M Hasan (2010)
First observation of Spin-Momentum Helical Locking in Bi2Se3 and Bi2Te3, demonstration of Topological-Order at 300K and a realization of topological-transport-regime
(2016)
α-Sn films
K. Kuhn (2012)
Considerations for Ultimate CMOS ScalingIEEE Transactions on Electron Devices, 59
M. Computing's energy problem Horowitz (2014)
10–14 (IEEE, 2014)Solid-State Circuits Conference Digest of Technical Papers 2014 10–14 (IEEE
M. Street, W. Echtenkamp, T. Komesu, S. Cao, P. Dowben, C. Binek (2014)
Increasing the Neel temperature of magnetoelectric chromia for voltage-controlled spintronicsApplied Physics Letters, 104
J. Varignon, L. Vila, A. Barthélémy, M. Bibes (2018)
A new spin for oxide interfacesNature Physics, 14
M. Dyakonov, V. Perel’ (1971)
Current-induced spin orientation of electrons in semiconductorsPhysics Letters A, 35
M. Horowitz (2014)
1.1 Computing's energy problem (and what we can do about it)2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC)
X He (2010)
Robust isothermal electric control of exchange bias at room temperatureNat. Mater., 9
D. C. et al. Room-temperature perpendicular magnetization switching through giant spin-orbit torque from sputtered BixSe Mahendra (2017)
//arxiv.org/abs/1703.03822
S. Srinivasan (2016)
Srinivasan, S., Diep, V., Behin-Aein, B., Sarkar, A. & Datta, S. Modeling multi-magnet networks interacting via spin currents. In Handbook of Spintronics 1281–1335 (2016).Handbook of Spintronics 1281–1335 (2016)
I. Ferain, C. Colinge, J. Colinge (2011)
Multigate transistors as the future of classical metal–oxide–semiconductor field-effect transistorsNature, 479
S. Manipatruni, D. Nikonov, Chia-Ching Lin, B. Prasad, Yen-Lin Huang, A. Damodaran, Zuhuang Chen, R. Ramesh, I. Young (2018)
Voltage control of unidirectional anisotropy in ferromagnet-multiferroic systemScience Advances, 4
Junwoo Son, S. Rajan, S. Stemmer, S. Allen (2011)
A heterojunction modulation-doped Mott transistorJournal of Applied Physics, 110
S. Manipatruni, D. Nikonov, I. Young (2018)
Beyond CMOS computing with spin and polarizationNature Physics, 14
J. Ryu, A. Carazo, K. Uchino, Hyoun‐Ee Kim (2001)
Magnetoelectric Properties in Piezoelectric and Magnetostrictive Laminate CompositesJapanese Journal of Applied Physics, 40
A. Imre, G. Csaba, L. Ji, A. Orlov, G. Bernstein, W. Porod (2006)
Majority Logic Gate for Magnetic Quantum-Dot Cellular AutomataScience, 311
S. Manipatruni, D. Nikonov, I. Young (2012)
Material Targets for Scaling All Spin LogicArXiv, abs/1212.3362
Xi He, Yi Wang, N. Wu, Siqi Shi, A. Caruso, E. Vescovo, K. Belashchenko, P. Dowben, C. Binek (2010)
Robust isothermal electric switching of interface magnetization: A route to voltage-controlled spin electronicsBulletin of the American Physical Society, 2010
A. D. Patil (2017)
//arxiv.org/abs/1702.06119
A. Mayadas, M. Shatzkes, J. Janak (1969)
ELECTRICAL RESISTIVITY MODEL FOR POLYCRYSTALLINE FILMS: THE CASE OF SPECULAR REFLECTION AT EXTERNAL SURFACESApplied Physics Letters, 14
V. Edelstein (1990)
Spin polarization of conduction electrons induced by electric current in two-dimensional asymmetric electron systemsSolid State Communications, 73
M. Bibes (2014)
Electric-field control of magnetic order above room temperature.Nature materials, 13 4
Dmitri Nikonov, I. Young (2015)
Benchmarking of Beyond-CMOS Exploratory Devices for Logic Integrated CircuitsIEEE Journal on Exploratory Solid-State Computational Devices and Circuits, 1
S. Manipatruni, M. Lipson, I. Young (2012)
Device Scaling Considerations for Nanophotonic CMOS Global InterconnectsIEEE Journal of Selected Topics in Quantum Electronics, 19
S. Manipatruni, D. Nikonov, I. Young (2012)
Modeling and Design of Spintronic Integrated CircuitsIEEE Transactions on Circuits and Systems I: Regular Papers, 59
A. Brataas, G. Bauer, P. Kelly (2006)
Non-collinear magnetoelectronicsPhysics Reports, 427
Y. Omori, F. Auvray, T. Wakamura, Y. Niimi, A. Fert, Y. Otani (2014)
Inverse spin Hall effect in a closed loop circuitApplied Physics Letters, 104
M. Schumacher, P. Baumann, T. Seidel (2006)
AVD and ALD as Two Complementary Technology Solutions for Next Generation Dielectric and Conductive Thin‐Film ProcessingChemInform, 37
N. Khang, Yugo Ueda, P. Hai (2017)
A conductive topological insulator with large spin Hall effect for ultralow power spin–orbit torque switchingNature Materials, 17
S. Srinivasan, V. Diep, B. Behin-Aein, A. Sarkar, S. Datta (2013)
All spin logic: Modeling multi-magnet networks interacting via spin currents
S. Manipatruni, D. Nikonov, I. Young (2012)
All Spin Nano-magnetic State ElementsArXiv, abs/1210.1613
N. Srisukhumbowornchai, S. Guruswamy (2001)
Large magnetostriction in directionally solidified FeGa and FeGaAl alloysJournal of Applied Physics, 90
C. Mead (1990)
Neuromorphic electronic systemsProc. IEEE, 78
Anjan Soumyanarayanan, N. Reyren, A. Fert, C. Panagopoulos (2016)
Emergent phenomena induced by spin–orbit coupling at surfaces and interfacesNature, 539
N. Spaldin, M. Fiebig (2005)
The Renaissance of Magnetoelectric MultiferroicsScience, 309
Gang Wang, C. Robert, Aslihan Suslu, Bin Chen, Si-jie Yang, S. Alamdari, I. Gerber, T. Amand, X. Marie, S. Tongay, B. Urbaszek (2015)
Spin-orbit engineering in transition metal dichalcogenide alloy monolayersNature Communications, 6
K. Shen, G. Vignale, G. Vignale, R. Raimondi (2013)
Microscopic theory of the inverse Edelstein effect.Physical review letters, 112 9
C. et al. A Auth (2017)
Auth, C. et al. A 10 nm high performance and low-power CMOS technology featuring 3rd generation FinFET transistors, self-aligned quad patterning, contact over active gate and cobalt local interconnects. In Electron Devices Meeting 2017, 29.1.1–29.1.4 (IEEE, 2017).Electron Devices Meeting 2017
Kaisheng Ma, Xueqing Li, Shuangchen Li, Yongpan Liu, J. Sampson, Yuan Xie, N. Vijaykrishnan (2015)
Nonvolatile Processor Architecture Exploration for Energy-Harvesting ApplicationsIEEE Micro, 35
D. Gardner, J. Meindl, K. Saraswat (1987)
Interconnection and electromigration scaling theoryIEEE Transactions on Electron Devices, 34
T. Ghani, M. Armstrong, C. Auth, M. Bost, P. Charvat, G. Glass, Thomas Hoffmann, K. Johnson, C. Kenyon, Jason Klaus, B. Mcintyre, K. Mistry, A. Murthy, J. Sandford, M. Silberstein, S. Sivakumar, P. Smith, K. Zawadzki, Scott Thompson, M. Bohr (2003)
A 90nm high volume manufacturing logic technology featuring novel 45nm gate length strained silicon CMOS transistorsIEEE International Electron Devices Meeting 2003
Markus Voelter (1997)
State of the ArtPediatric Research, 41
W. Butler, T. Mewes, C. Mewes, P. Visscher, W. Rippard, S. Russek, R. Heindl (2012)
Switching Distributions for Perpendicular Spin-Torque Devices Within the Macrospin ApproximationIEEE Transactions on Magnetics, 48
C. Auth, A. Aliyarukunju, M. Asoro, D. Bergstrom, V. Bhagwat, J. Birdsall, N. Bisnik, M. Buehler, V. Chikarmane, G. Ding, Q. Fu, H. Gomez, W. Han, D. Hanken, M. Haran, M. Hattendorf, R. Heussner, H. Hiramatsu, B. Ho, S. Jaloviar, I. Jin, S. Joshi, S. Kirby, S. Kosaraju, H. Kothari, G. Leatherman, K. Lee, J. Leib, A. Madhavan, K. Marla, H. Meyer, T. Mule, C. Parker, S. Parthasarathy, C. Pelto, L. Pipes, I. Post, M. Prince, A. Rahman, S. Rajamani, A. Saha, J. Santos, M. Sharma, V. Sharma, J. Shin, P. Sinha, P. Smith, M. Sprinkle, A. Amour, C. Staus, R. Suri, D. Towner, A. Tripathi, A. Tura, C. Ward, A. Yeoh (2017)
A 10nm high performance and low-power CMOS technology featuring 3rd generation FinFET transistors, Self-Aligned Quad Patterning, contact over active gate and cobalt local interconnects2017 IEEE International Electron Devices Meeting (IEDM)
T. Krishnamohan, Donghyun Kim, T. Dinh, A. Pham, B. Meinerzhagen, C. Jungemann, K. Saraswat (2008)
Comparison of (001), (110) and (111) uniaxial- and biaxial- strained-Ge and strained-Si PMOS DGFETs for all channel orientations: Mobility enhancement, drive current, delay and off-state leakage2008 IEEE International Electron Devices Meeting
J. Rojas-S'anchez, S. Oyarzún, Y. Fu, A. Marty, C. Vergnaud, S. Gambarelli, L. Vila, M. Jamet, Y. Ohtsubo, A. Taleb-Ibrahimi, P. Fèvre, F. Bertran, N. Reyren, J. George, A. Fert (2015)
Spin-pumping into surface states of topological insulator {\alpha}-Sn, spin to charge conversion at room temperature
C. Ast, D. Pacil'e, M. Falub, L. Moreschini, M. Papagno, G. Wittich, P. Wahl, R. Vogelgesang, M. Grioni, K. Kern (2005)
Giant Spin-splitting in the Bi/Ag(111) Surface Alloy
O. et al. Design and benchmarking of hybrid CMOS-spin wave device circuits compared to Zografos (2015)
IEEE 15th International Conference on Nanotechnology (IEEE-NANO), 686–689 (IEEE, 2015)2015 IEEE 15th International Conference on Nanotechnology (IEEE-NANO)
C. et al. Direct observation of spin-to-charge conversion in MoS Cheng (2015)
//arxiv.org/abs/1510.03451
B. Behin-Aein, D. Datta, S. Salahuddin, S. Datta (2010)
Proposal for an all-spin logic device with built-in memory.Nature nanotechnology, 5 4
A. Chumak, A. Serga, B. Hillebrands (2014)
Magnon transistor for all-magnon data processingNature Communications, 5
L. et al. Majority logic synthesis. In Proc. International Conference on Computer-Aided Design Amarù (2018)
Amarù, L. et al. Majority logic synthesis. In Proc. International Conference on Computer-Aided Design 79 (ACM, 2018).Proc
S. Dutta, S. Beyne, Anshul Gupta, S. Kundu, S. Elshocht, H. Bender, G. Jamieson, W. Vandervorst, J. Bömmels, Christopher Wilson, Z. Tokei, C. Adelmann (2018)
Sub-100 nm2 Cobalt InterconnectsIEEE Electron Device Letters, 39
T. et al. Comparison of Krishnamohan (2008)
1–4 (IEEE, 2008)Electron Devices Meeting 2008
D. Pesin, D. Pesin, D. Pesin, L. Balents (2009)
Mott physics and band topology in materials with strong spin-orbit interactionNature Physics, 6
A. Ionescu, H. Riel (2011)
Tunnel field-effect transistors as energy-efficient electronic switchesNature, 479
Xuejue Huang, Wen-Chin Lee, C. Kuo, D. Hisamoto, L. Chang, J. Kedzierski, E. Anderson, H. Takeuchi, Yang-Kyu Choi, K. Asano, V. Subramanian, T. King, J. Bokor, C. Hu (1999)
Sub 50-nm FinFET: PMOSInternational Electron Devices Meeting 1999. Technical Digest (Cat. No.99CH36318)
S. Karube (2016)
//arxiv.org/abs/1601.04292
Y. Shiomi, K. Nomura, Y. Kajiwara, K. Eto, M. Novak, K. Segawa, Y. Ando, E. Saitoh (2014)
Spin-electricity conversion induced by spin injection into topological insulators.Physical review letters, 113 19
C. Shannon (1956)
A Universal Turing Machine with Two Internal States
D. Apalkov, P. Visscher (2004)
Spin-torque switching: Fokker-Planck rate calculationPhysical Review B, 72
D. Newns, B. Elmegreen, Xiao Liu, G. Martyna (2012)
A low-voltage high-speed electronic switch based on piezoelectric transductionJournal of Applied Physics, 111
Ameya Patil, S. Manipatruni, D. Nikonov, I. Young, Naresh Shanbhag (2017)
Shannon-inspired Statistical Computing to Enable SpintronicsArXiv, abs/1702.06119
T. et al. A Ghani (2003)
Ghani, T. et al. A 90 nm high volume manufacturing logic technology featuring novel 45nm gate length strained silicon CMOS transistors. In Electron Devices Meeting 2003, 11.6.1–11.6.3 (IEEE, 2003).Electron Devices Meeting 2003
Y. Chu, Q. Zhan, C. Yang, M. Cruz, L. Martin, T. Zhao, P. Yu, R. Ramesh, P. Joseph, I. Lin, W. Tian, D. Schlom (2008)
Low voltage performance of epitaxial BiFeO3 films on Si substrates through lanthanum substitutionApplied Physics Letters, 92
T. Theis, P. Solomon (2010)
It’s Time to Reinvent the Transistor!Science, 327
E. Lesne, E. Lesne, Yu Fu, S. Oyarzún, S. Oyarzún, J. Rojas-Sánchez, J. Rojas-Sánchez, D. Vaz, H. Naganuma, H. Naganuma, G. Sicoli, J. Attané, M. Jamet, E. Jacquet, J. George, A. Barthélémy, H. Jaffrès, A. Fert, M. Bibes, L. Vila (2016)
Highly efficient and tunable spin-to-charge conversion through Rashba coupling at oxide interfaces.Nature materials, 15 12
J. Sánchez, L. Vila, G. Desfonds, S. Gambarelli, J. Attané, J. Teresa, J. Teresa, C. Magén, A. Fert, A. Fert (2013)
Spin-to-charge conversion using Rashba coupling at the interface between non-magnetic materialsNature Communications, 4
D. Nikonov, G. Bourianoff, T. Ghani (2010)
Proposal of a Spin Torque Majority Gate LogicIEEE Electron Device Letters, 32
J. Heron, J. Bosse, Qing He, Ya Gao, Ya Gao, M. Trassin, Linghan Ye, J. Clarkson, Chen Wang, Jian Liu, S. Salahuddin, D. Ralph, D. Schlom, J. Íñiguez, B. Huey, R. Ramesh, R. Ramesh (2014)
Deterministic switching of ferromagnetism at room temperature using an electric fieldNature, 516
M. Veit, R. Arras, B. Ramshaw, R. Pentcheva, Y. Suzuki (2018)
Nonzero Berry phase in quantum oscillations from giant Rashba-type spin splitting in LaTiO3/SrTiO3 heterostructuresNature Communications, 9
PK Baumann M Schumacher (2006)
AVD and ALD as two complementary technology solutions for next generation dielectric and conductive thin-film processingChem. Vap. Depos., 12
T. Kimura, T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima, Y. Tokura (2003)
Magnetic control of ferroelectric polarizationNature, 426
S. Salahuddin, S. Datta (2008)
Use of negative capacitance to provide voltage amplification for low power nanoscale devices.Nano letters, 8 2
S. Karube, K. Kondou, Y. Otani (2016)
Experimental observation of spin-to-charge current conversion at non-magnetic metal/Bi2O3 interfacesApplied Physics Express, 9
Yabin Fan, P. Upadhyaya, X. Kou, M. Lang, S. Takei, Zhenxing Wang, Jianshi Tang, Liang He, Li-Te Chang, M. Montazeri, Guoqiang Yu, Wanjun Jiang, T. Nie, R. Schwartz, Y. Tserkovnyak, Kang Wang (2014)
Magnetization switching through giant spin-orbit torque in a magnetically doped topological insulator heterostructure.Nature materials, 13 7
S. et al. Voltage control of uni-directional anisotropy in ferromagnet–multiferroic system. Preprint at https Manipatruni (2018)
//arxiv.org/abs/1801.08280
Hao Lu, A. Seabaugh (2014)
Tunnel Field-Effect Transistors: State-of-the-ArtIEEE Journal of the Electron Devices Society, 2
G. Moore (1998)
Cramming More Components Onto Integrated CircuitsProceedings of the IEEE, 86
Junlei Wang, J. Santana, N. Wu, C. Karunakaran, Jian Wang, P. Dowben, C. Binek (2014)
Magnetoelectric Fe 2TeO 6 thin filmsJournal of Physics: Condensed Matter, 26
L. Amarù, Eleonora Testa, Miguel Couceiro, O. Zografos, G. Micheli, Mathias Soeken (2018)
Majority Logic Synthesis2018 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)
X. et al. Sub Huang (1998)
67–70 (IEEE, 1999)Electron Devices Meeting 1998
James Meindl, Qiang Chen, Jeffrey Davis (2001)
Limits on silicon nanoelectronics for terascale integration.Science, 293 5537
J. Mundy, C. Brooks, M. Holtz, J. Moyer, H. Das, A. Rébola, J. Heron, J. Clarkson, S. Disseler, Zhiqi Liu, A. Farhan, Rainer Held, R. Hovden, Elliot Padgett, Q. Mao, H. Paik, R. Misra, L. Kourkoutis, E. Arenholz, A. Scholl, J. Borchers, W. Ratcliff, R. Ramesh, C. Fennie, P. Schiffer, D. Muller, D. Schlom (2016)
Atomically engineered ferroic layers yield a room-temperature magnetoelectric multiferroicNature, 537
S. Dutta, S. Kundu, Anshul Gupta, G. Jamieson, Juan Granados, J. Bömmels, Christopher Wilson, Z. Tokei, C. Adelmann (2017)
Highly Scaled Ruthenium InterconnectsIEEE Electron Device Letters, 38
R. Grassi, JY Chen, M. Jamali, D. Hickey, D. Zhang, Z. Zhao, H. Li, P., Quarterman, Y. Lv, M. Li, K. Mkhoyan, T. Low, JP Wang (2017)
Room-temperature perpendicular magnetization switching through giant spin-orbit torque from sputtered BixSe(1-x) topological insulator material
Robert Dennard, F. Gaensslen, YU HWA-NIEN, V. Rideout, Ernest Bassous, A. Leblanc (1974)
Design Of Ion-implanted MOSFET's with Very Small Physical DimensionsProceedings of the IEEE, 87
Abstract Since the early 1980s, most electronics have relied on the use of complementary metal–oxide–semiconductor (CMOS) transistors. However, the principles of CMOS operation, involving a switchable semiconductor conductance controlled by an insulating gate, have remained largely unchanged, even as transistors are miniaturized to sizes of 10 nanometres. We investigated what dimensionally scalable logic technology beyond CMOS could provide improvements in efficiency and performance for von Neumann architectures and enable growth in emerging computing such as artifical intelligence. Such a computing technology needs to allow progressive miniaturization, reduce switching energy, improve device interconnection and provide a complete logic and memory family. Here we propose a scalable spintronic logic device that operates via spin–orbit transduction (the coupling of an electron’s angular momentum with its linear momentum) combined with magnetoelectric switching. The device uses advanced quantum materials, especially correlated oxides and topological states of matter, for collective switching and detection. We describe progress in magnetoelectric switching and spin–orbit detection of state, and show that in comparison with CMOS technology our device has superior switching energy (by a factor of 10 to 30), lower switching voltage (by a factor of 5) and enhanced logic density (by a factor of 5). In addition, its non-volatility enables ultralow standby power, which is critical to modern computing. The properties of our device indicate that the proposed technology could enable the development of multi-generational computing.
Nature – Springer Journals
Published: Jan 1, 2019
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.