Semantic Models for Adaptive Interactive SystemsPASTREM: Proactive Ontology Based Recommendations for Information Workers
Semantic Models for Adaptive Interactive Systems: PASTREM: Proactive Ontology Based...
Schmidt, Benedikt; Godehardt, Eicke; Paulheim, Heiko
2013-05-14 00:00:00
[Information work involves the frequent (re)use of information objects (e.g. files, web sites, emails) for different tasks. Information reuse is complicated by the scattered organization of information among different locations. Therefore, access support based on recommendations is beneficial. Still, support needs to consider the ad-hoc nature of information work and the resulting uncertainty of information requirements. We present PASTREM, an ontology-based recommender system which proactively proposes information objects for reuse while a user interacts with a computer. PASTREM reflects the ad-hoc nature of information work and allows users to switch seamlessly between recommendations for more multitasking oriented or more focused work. This chapter describes the PASTREM recommender, the used data foundation of interaction histories, data storage in an ontology and the process of recommendation elicitation. PASTREM is evaluated in comparison with other, activity related recommendation approaches for information reuse, namely last recently used, most often used, longest used and semantically related. We report on strength and weaknesses of the approaches and show the benefits of PASTREM as recommender which considers the difference between single task focused and multitasking oriented recommendations.]
http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.pnghttp://www.deepdyve.com/lp/springer-journals/semantic-models-for-adaptive-interactive-systems-pastrem-proactive-zbD2KRMBWa
Semantic Models for Adaptive Interactive SystemsPASTREM: Proactive Ontology Based Recommendations for Information Workers
[Information work involves the frequent (re)use of information objects (e.g. files, web sites, emails) for different tasks. Information reuse is complicated by the scattered organization of information among different locations. Therefore, access support based on recommendations is beneficial. Still, support needs to consider the ad-hoc nature of information work and the resulting uncertainty of information requirements. We present PASTREM, an ontology-based recommender system which proactively proposes information objects for reuse while a user interacts with a computer. PASTREM reflects the ad-hoc nature of information work and allows users to switch seamlessly between recommendations for more multitasking oriented or more focused work. This chapter describes the PASTREM recommender, the used data foundation of interaction histories, data storage in an ontology and the process of recommendation elicitation. PASTREM is evaluated in comparison with other, activity related recommendation approaches for information reuse, namely last recently used, most often used, longest used and semantically related. We report on strength and weaknesses of the approaches and show the benefits of PASTREM as recommender which considers the difference between single task focused and multitasking oriented recommendations.]
Published: May 14, 2013
Keywords: Recommender System; Information Requirement; Latent Dirichlet Allocation; Information Object; Task Switch
Recommended Articles
Loading...
There are no references for this article.
Share the Full Text of this Article with up to 5 Colleagues for FREE
Sign up for your 14-Day Free Trial Now!
Read and print from thousands of top scholarly journals.
To get new article updates from a journal on your personalized homepage, please log in first, or sign up for a DeepDyve account if you don’t already have one.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.