Access the full text.
Sign up today, get DeepDyve free for 14 days.
R. Duin, E. Pekalska (2012)
The dissimilarity space: Bridging structural and statistical pattern recognitionPattern Recognit. Lett., 33
W. Gray, J. Bogovic, J. Vogelstein, B. Landman, Jerry Prince, R. Vogelstein (2012)
Magnetic Resonance Connectome Automated Pipeline: An OverviewIEEE Pulse, 3
J. Vogelstein, John Conroy, L. Podrazik, S. Kratzer, D. Fishkind, R. Vogelstein, C. Priebe (2011)
Fast Inexact Graph Matching with Applications in Statistical ConnectomicsArXiv, abs/1112.5507
J. Vogelstein, William Roncal, R. Vogelstein, C. Priebe (2011)
Graph Classification Using Signal-Subgraphs: Applications in Statistical ConnectomicsIEEE Transactions on Pattern Analysis and Machine Intelligence, 35
J. Gibert, Ernest Valveny, H. Bunke (2012)
Graph embedding in vector spaces by node attribute statisticsPattern Recognit., 45
(2010)
You Say Graph Invariant , I Say Test Statistic ”
C. Stone (1977)
Consistent Nonparametric RegressionAnnals of Statistics, 5
Martin Grohe, Pascal Schweitzer (2020)
The graph isomorphism problemCommunications of the ACM, 63
David Johnson, W. Freeman
The Np-completeness Column: an Ongoing Guide Garey and Myself in Our Book ''computers and Intractability: a Guide to the Theory of Np-completeness,''
H. Kashima, Akihiro Inokuchi (2002)
Kernels for graph classification
W. Gray, J. Bogovic, J. Vogelstein, B. Landman, Jerry Prince, R. Vogelstein (2011)
Magnetic Resonance Connectome Automated PipelinearXiv: Neurons and Cognition
E. Borzeshi, M. Piccardi, Kaspar Riesen, H. Bunke (2013)
Discriminative prototype selection methods for graph embeddingPattern Recognit., 46
A. Martino, Chaogan Yan, Qingyang Li, Erin Denio, F. Castellanos, K. Alaerts, Jeffrey Anderson, M. Assaf, S. Bookheimer, M. Dapretto, Ben Deen, S. Delmonte, I. Dinstein, B. Ertl-Wagner, D. Fair, L. Gallagher, Daniel Kennedy, C. Keown, C. Keysers, J. Lainhart, C. Lord, B. Luna, V. Menon, N. Minshew, Christopher Monk, S. Mueller, R. Müller, M. Nebel, J. Nigg, K. O'Hearn, K. Pelphrey, S. Peltier, J. Rudie, S. Sunaert, M. Thioux, J. Tyszka, L. Uddin, J. Verhoeven, N. Wenderoth, J. Wiggins, S. Mostofsky, M. Milham (2013)
The Autism Brain Imaging Data Exchange: Towards Large-Scale Evaluation of the Intrinsic Brain Architecture in AutismMolecular psychiatry, 19
Aurobrata Ghosh, R. Deriche (2013)
From Diffusion MRI to Brain Connectomics
Nikhil Ketkar, L. Holder, D. Cook (2009)
Empirical comparison of graph classification algorithms2009 IEEE Symposium on Computational Intelligence and Data Mining
Hiroto Saigo, Sebastian Nowozin, T. Kadowaki, Taku Kudo, K. Tsuda (2009)
gBoost: a mathematical programming approach to graph classification and regressionMachine Learning, 75
H. Pao, Glen Coppersmith, C. Priebe (2011)
Statistical Inference on Random Graphs: Comparative Power Analyses via Monte CarloJournal of Computational and Graphical Statistics, 20
(2010)
Networks of the Brain, Cambridge MA: The MIT Press. STONE, C.J
P. Hagmann, L. Cammoun, X. Gigandet, S. Gerhard, P. Grant, V. Wedeen, R. Meuli, J. Thiran, C. Honey, O. Sporns (2010)
MR connectomics: Principles and challengesJournal of Neuroscience Methods, 194
R. Desikan, F. Ségonne, B. Fischl, B. Quinn, B. Dickerson, D. Blacker, R. Buckner, A. Dale, R. Maguire, B. Hyman, M. Albert, R. Killiany (2006)
An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interestNeuroImage, 31
J. White, Erica Southgate, J. Thomson, S. Brenner (1986)
The structure of the nervous system of the nematode Caenorhabditis elegans.Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 314 1165
J. Vogelstein, R. Vogelstein, C. Priebe (2009)
Are mental properties supervenient on brain properties?Scientific Reports, 1
We develop a formalism to address statistical pattern recognition of graph valued data. Of particular interest is the case of all graphs having the same number of uniquely labeled vertices. When the vertex labels are latent, such graphs are called shuffled graphs. Our formalism provides insight to trivially answer a number of open statistical questions including: (i) under what conditions does shuffling the vertices degrade classification performance and (ii) do universally consistent graph classifiers exist? The answers to these questions lead to practical heuristic algorithms with state-of-the-art finite sample performance, in agreement with our theoretical asymptotics. Applying these methods to classify sex and autism in two different human connectome classification tasks yields successful classification results in both applications.
Journal of Classification – Springer Journals
Published: Mar 11, 2015
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.