Access the full text.
Sign up today, get DeepDyve free for 14 days.
We compute the expected value of various quantities related to the biparametric singularities of a pair of smooth centered Gaussian random fields on an n-dimensional compact manifold, such as the lengths of the critical curves and contours of a fixed index and the number of cusps. We obtain certain expressions under no particular assumptions other than smoothness of the two fields, but more explicit formulae are derived under varying levels of additional constraints such as the two random fields being i.i.d, stationary, isotropic etc.
Journal of Applied and Computational Topology – Springer Journals
Published: Mar 3, 2023
Keywords: Persistent homology; Biparametric persistence; Gaussian random fields; 55N31; 62R40; 60G15
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.