Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Slice sampling mixture models

Slice sampling mixture models We propose a more efficient version of the slice sampler for Dirichlet process mixture models described by Walker (Commun. Stat., Simul. Comput. 36:45–54, 2007). This new sampler allows for the fitting of infinite mixture models with a wide-range of prior specifications. To illustrate this flexibility we consider priors defined through infinite sequences of independent positive random variables. Two applications are considered: density estimation using mixture models and hazard function estimation. In each case we show how the slice efficient sampler can be applied to make inference in the models. In the mixture case, two submodels are studied in detail. The first one assumes that the positive random variables are Gamma distributed and the second assumes that they are inverse-Gaussian distributed. Both priors have two hyperparameters and we consider their effect on the prior distribution of the number of occupied clusters in a sample. Extensive computational comparisons with alternative “conditional” simulation techniques for mixture models using the standard Dirichlet process prior and our new priors are made. The properties of the new priors are illustrated on a density estimation problem. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Statistics and Computing Springer Journals

Loading next page...
 
/lp/springer-journals/slice-sampling-mixture-models-SBAobp5FBv

References (31)

Publisher
Springer Journals
Copyright
Copyright © 2009 by Springer Science+Business Media, LLC
Subject
Statistics; Artificial Intelligence (incl. Robotics); Mathematics, general; Numeric Computing; Statistics, general; Statistics and Computing/Statistics Programs
ISSN
0960-3174
eISSN
1573-1375
DOI
10.1007/s11222-009-9150-y
Publisher site
See Article on Publisher Site

Abstract

We propose a more efficient version of the slice sampler for Dirichlet process mixture models described by Walker (Commun. Stat., Simul. Comput. 36:45–54, 2007). This new sampler allows for the fitting of infinite mixture models with a wide-range of prior specifications. To illustrate this flexibility we consider priors defined through infinite sequences of independent positive random variables. Two applications are considered: density estimation using mixture models and hazard function estimation. In each case we show how the slice efficient sampler can be applied to make inference in the models. In the mixture case, two submodels are studied in detail. The first one assumes that the positive random variables are Gamma distributed and the second assumes that they are inverse-Gaussian distributed. Both priors have two hyperparameters and we consider their effect on the prior distribution of the number of occupied clusters in a sample. Extensive computational comparisons with alternative “conditional” simulation techniques for mixture models using the standard Dirichlet process prior and our new priors are made. The properties of the new priors are illustrated on a density estimation problem.

Journal

Statistics and ComputingSpringer Journals

Published: Sep 19, 2009

There are no references for this article.