Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Soil microbial population dynamics along a chronosequence of moist evergreen broad-leaved forest succession in southwestern China

Soil microbial population dynamics along a chronosequence of moist evergreen broad-leaved forest... Little is known about whether soil microbial population dynamics are correlated with forest succession. To test the hypotheses that (1) soil microbial composition changes over successional stages, and (2) soil microbial diversity is positively correlated with plant species diversity, we determined the soil microbial populations, community composition, and microflora diversity in evergreen broad-leaved forests along a chronosequence of vegetation succession from 5 to 300 years in southwestern China. The soil microbial community was mainly composed of bacteria (87.1–98.7% of the total microorganisms and 10 genera identified), fungi (0.3–4.0%, 7 genera), and actinomycetes (2.1–9.1%, 8 species and 1 genus). There were significant differences in soil microbial populations among different successional stages and within the four seasons. The seasonal variations of the soil microbial community may be associated with the seasonal changes in environmental conditions. The changes in soil microbial diversity (Shannon-Wiener index) with successional time followed one-humped, convex curves peaked at ∼100 years since restoration, which is identical with the trends of the aboveground plant diversity. Higher plant diversity resulting in enhanced nutrient flow and root exudation may contribute to positive relationships between the soil microbial diversity and plant diversity. Hence, decreases in soil microbial diversity in the late-successional stages appear to be related to the net loss in species richness that occurs after 100 years since restoration. Our findings confirm the intermediate disturbance hypothesis that suggests diversity peaks at midsuccessional stages. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Mountain Science Springer Journals

Soil microbial population dynamics along a chronosequence of moist evergreen broad-leaved forest succession in southwestern China

Loading next page...
 
/lp/springer-journals/soil-microbial-population-dynamics-along-a-chronosequence-of-moist-l0GOcr0ARP

References (91)

Publisher
Springer Journals
Copyright
Copyright © 2010 by Science Press, Institute of Mountain Hazards and Environment, CAS and Springer-Verlag Berlin Heidelberg
Subject
Earth Sciences; Earth Sciences, general; Geography, general; Environment, general; Ecology
ISSN
1672-6316
eISSN
1993-0321
DOI
10.1007/s11629-010-1098-z
Publisher site
See Article on Publisher Site

Abstract

Little is known about whether soil microbial population dynamics are correlated with forest succession. To test the hypotheses that (1) soil microbial composition changes over successional stages, and (2) soil microbial diversity is positively correlated with plant species diversity, we determined the soil microbial populations, community composition, and microflora diversity in evergreen broad-leaved forests along a chronosequence of vegetation succession from 5 to 300 years in southwestern China. The soil microbial community was mainly composed of bacteria (87.1–98.7% of the total microorganisms and 10 genera identified), fungi (0.3–4.0%, 7 genera), and actinomycetes (2.1–9.1%, 8 species and 1 genus). There were significant differences in soil microbial populations among different successional stages and within the four seasons. The seasonal variations of the soil microbial community may be associated with the seasonal changes in environmental conditions. The changes in soil microbial diversity (Shannon-Wiener index) with successional time followed one-humped, convex curves peaked at ∼100 years since restoration, which is identical with the trends of the aboveground plant diversity. Higher plant diversity resulting in enhanced nutrient flow and root exudation may contribute to positive relationships between the soil microbial diversity and plant diversity. Hence, decreases in soil microbial diversity in the late-successional stages appear to be related to the net loss in species richness that occurs after 100 years since restoration. Our findings confirm the intermediate disturbance hypothesis that suggests diversity peaks at midsuccessional stages.

Journal

Journal of Mountain ScienceSpringer Journals

Published: Nov 9, 2010

There are no references for this article.