Access the full text.
Sign up today, get DeepDyve free for 14 days.
A positive integer n is called square-full if for every prime p|n\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$p\vert n$$\end{document}, also p2|n\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$p^2\vert n$$\end{document}. Piatetski–Shapiro sequences (PS-sequences) are defined by Nc=(⌊nc⌋)n∈N,(c>1,c∉N),\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\begin{aligned} {\mathbb {N}}^c=(\lfloor n^c \rfloor )_{n\in {\mathbb {N}}}, \quad (c>1, c\notin {\mathbb {N}}), \end{aligned}$$\end{document}where ⌊z⌋\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\lfloor z\rfloor $$\end{document} is the integer part of a real z. In this paper we investigate the distribution of square-full numbers in Piatetski–Shapiro sequences.Résumé Un entier positif n est appelé un nombre puissant si pour chaque nombre premier p qui divise n, on a p2∣n\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$p^2\mid n$$\end{document}. Les séquences de Piatetski–Shapiro (PS-séquences) sont définies par Nc=(⌊nc⌋)n∈N,(c>1,c∉N),\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\begin{aligned} {\mathbb {N}}^c=(\lfloor n^c \rfloor )_{n\in {\mathbb {N}}}, \ \ \ \ (c>1, c\notin {\mathbb {N}}), \end{aligned}$$\end{document}oú ⌊z⌋\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\lfloor z\rfloor $$\end{document} est la partie entie entiére d’un reél z. Dans cet article, nous étudions la distribution des nombres puissants dans des séquences de Piatetski–Shapiro.
Annales mathématiques du Québec – Springer Journals
Published: Oct 15, 2020
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.