Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Stability for Euler-Bernoulli Beam Equation with a Local Degenerated Kelvin-Voigt Damping

Stability for Euler-Bernoulli Beam Equation with a Local Degenerated Kelvin-Voigt Damping We consider the Euler-Bernoulli beam equation with a local Kelvin-Voigt dissipation type in the interval (−1,1)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$(-1,1)$\end{document}. The coefficient damping is only effective in (0,1)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$(0,1)$\end{document} and is degenerating near the 0 point with a speed at least equal to xα\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$x^{\alpha }$\end{document} where α∈(0,5)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$\alpha \in (0,5)$\end{document}. We prove that the semigroup corresponding to the system is polynomially stable and the decay rate depends on the degeneracy speed α\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$\alpha $\end{document}. Here we develop a new method which consists to use a local analysis approach combined with the classical iterative method. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Acta Applicandae Mathematicae Springer Journals

Stability for Euler-Bernoulli Beam Equation with a Local Degenerated Kelvin-Voigt Damping

Acta Applicandae Mathematicae , Volume 184 (1) – Apr 1, 2023

Loading next page...
 
/lp/springer-journals/stability-for-euler-bernoulli-beam-equation-with-a-local-degenerated-poiNeQVMw1
Publisher
Springer Journals
Copyright
Copyright © The Author(s), under exclusive licence to Springer Nature B.V. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
ISSN
0167-8019
eISSN
1572-9036
DOI
10.1007/s10440-023-00559-5
Publisher site
See Article on Publisher Site

Abstract

We consider the Euler-Bernoulli beam equation with a local Kelvin-Voigt dissipation type in the interval (−1,1)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$(-1,1)$\end{document}. The coefficient damping is only effective in (0,1)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$(0,1)$\end{document} and is degenerating near the 0 point with a speed at least equal to xα\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$x^{\alpha }$\end{document} where α∈(0,5)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$\alpha \in (0,5)$\end{document}. We prove that the semigroup corresponding to the system is polynomially stable and the decay rate depends on the degeneracy speed α\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$\alpha $\end{document}. Here we develop a new method which consists to use a local analysis approach combined with the classical iterative method.

Journal

Acta Applicandae MathematicaeSpringer Journals

Published: Apr 1, 2023

Keywords: Polynomial stability; Degenerate Kelvin-Voigt damping; 35B35; 35B40; 93C05; 93D15; 93D20

References