Access the full text.
Sign up today, get DeepDyve free for 14 days.
[Although the source/filter model is often mentioned in the literature of acoustics and signal processing (e.g., Gold and Morgan, Speech and Audio Signal Processing, Wiley), it has seldom been implemented for musical instrument sounds. For operatic style male voices with sufficient vibrato depth, overlapped harmonic amplitude-versus-frequency (HAF) graphs can yield displays that trace out vocal tract resonances quite effectively (Maher and Beauchamp in Appl Acoust 30:219–245, 1992 [4]; Arroabarren and Carlosena J Acoust Soc Am 119(4):2483–2497, 2006 [5]). If the glottus signal can be derived, its spectrum (in dB) can be subtracted from the HAF data to reveal a vocal tract transfer function. However, for the violin the HAF method with vibrato excitation has proved unsuccessful because (1) violin vibrato depths are generally insufficient and (2) HAF traces appear too steep to be caused by actual violin resonances. Therefore, a violin glide tone (C5-to-C4, performed in an anechoic chamber) was used instead. Based on an assumption that the source signal spectrum was independent of fundamental frequency (F0), average ratios between adjacent harmonic amplitudes were measured making it possible to derive a source spectrum (within a scale factor). From this the violin transfer function was derived. As a comparison, a pair of violin glide signals (one at the bridge and the other radiated) supplied to the author by Alfonso Perez-Carrillo (J Acoust Soc Am 130(2): 1020–1027, 2011 [19]) were analyzed. The measured bridge spectrum was similar to that of the C5-to-C4 tone’s derived source spectrum, but the derived filter was quite different, as might be expected considering the different violins and arbitrary microphone positions used in the two cases.]
Published: Dec 27, 2016
Keywords: Vocal Tract; Source Spectrum; Harmonic Amplitude; Spectral Envelope; Anechoic Chamber
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.