Access the full text.
Sign up today, get DeepDyve free for 14 days.
Yarn-based batteries with the dual functions of wearable and energy storage have demonstrated promising potential in wearable energy textiles. However, it is still an urgent problem to construct efficient and flexible electrodes while optimize the configuration of yarn-based batteries to maintain excellent electrochemical performance under different mechanical deformations. Herein, NiCo2S4−x nanotube arrays with tunable S-vacancies are constructed on carbon yarn (CY) (NiCo2S4−x@CY) by a facile hydrothermal strategy. The aqueous zinc-ion batteries (ZIBs) with NiCo2S4−x@CY as cathodes exhibit exceptional discharge capacity (271.7 mAh g−1) and outstanding rate performance (70.9% capacity retention at 5 A g−1), and reveal a maximum power density of 6,059.5 W kg−1 and a maximum energy density of 432.2 Wh kg−1. It is worth noting that the tunable S-vacancies promote the surface reconfiguration and phase transitions of NiCo2S4−x, thereby enhancing the conductivity and charge storage kinetics. The high reactivity and cycling stability of NiCo2S4−x@CY can be related to the discharge products of S-doped NiO and CoO. Furthermore, flexible stretchable yarn-based ZIBs with wrapped yarn structures are constructed and exhibit excellent tensile stability and durability under a variety of mechanical deformations. As a proof of concept, the ZIBs integrated into the fabric show excellent electrochemical performance even in response to simultaneous stretching and bending mechanical deformations. The proposed strategy provides novel inspiration for the development of highly efficient and economical yarn-based ZIBs and wearable energy textiles.Graphical Abstract[graphic not available: see fulltext]
Advanced Fiber Materials – Springer Journals
Published: Apr 1, 2023
Keywords: Sulfur vacancies; NiCo2S4−x nanotube arrays; Stretchable; Yarn-based zinc ion batteries; Wearable energy textiles
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.