Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Superhydrophilic Polydopamine-Modified Carbon-Fiber Membrane with Rapid Seawater-Transferring Ability for Constructing Efficient Hanging-Model Evaporator

Superhydrophilic Polydopamine-Modified Carbon-Fiber Membrane with Rapid Seawater-Transferring... Solar-driven seawater desalination has attracted much attention for alleviating global freshwater shortage, but the practical application is often limited by complicated fabrication processes, unsatisfactory seawater-transferring and severe salt accumulation on the photothermal membranes. To solve these problems, hydrophobic industrial-grade carbon fiber membrane (CFM) with good photoabsorption was surface-modified with polydopamine (PDA) to prepare superhydrophilic CFM@PDA for the construction of efficient hanging-model evaporators without salt accumulation. The coating of PDA on CFM is realized by simple self-polymerization of dopamine, and the as-prepared CFM@PDA exhibits high solar absorption efficiency of 96.7%, good photothermal effect and superhydrophilicity. Especially, when CFM@PDA is hanging between two water tanks (one contains seawater and the other is empty) in a flat hanging-model evaporator, it can transport seawater at a high rate (26.35 g/h) which is 3.6 times that (7.28 g/h) of commercial cotton fabric. Under simulated sunlight (1.0 kW m−2) irradiation, CFM@PDA shows a high evaporation rate of 1.79 kg m−2 h−1 with a solar evaporation efficiency of 92.6%. Even if NaCl solution with a high concentration (21.0 wt%) is used for the evaporation, the hanging CFM@PDA can retain a high evaporation rate (~ 1.80 kg m−2 h−1) without salt accumulation during the long-time test (8 h), which is significantly better than that of the tradition floating model. Therefore, this study not only demonstrates the simple preparation of superhydrophilic CFM@PDA, but also promotes the further practical applications of hanging-model evaporators for continuous salt-free desalination.Graphical Abstract[graphic not available: see fulltext] http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Advanced Fiber Materials Springer Journals

Superhydrophilic Polydopamine-Modified Carbon-Fiber Membrane with Rapid Seawater-Transferring Ability for Constructing Efficient Hanging-Model Evaporator

Loading next page...
 
/lp/springer-journals/superhydrophilic-polydopamine-modified-carbon-fiber-membrane-with-X3Qtq8G0nB
Publisher
Springer Journals
Copyright
Copyright © Donghua University, Shanghai, China 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
ISSN
2524-7921
eISSN
2524-793X
DOI
10.1007/s42765-023-00276-6
Publisher site
See Article on Publisher Site

Abstract

Solar-driven seawater desalination has attracted much attention for alleviating global freshwater shortage, but the practical application is often limited by complicated fabrication processes, unsatisfactory seawater-transferring and severe salt accumulation on the photothermal membranes. To solve these problems, hydrophobic industrial-grade carbon fiber membrane (CFM) with good photoabsorption was surface-modified with polydopamine (PDA) to prepare superhydrophilic CFM@PDA for the construction of efficient hanging-model evaporators without salt accumulation. The coating of PDA on CFM is realized by simple self-polymerization of dopamine, and the as-prepared CFM@PDA exhibits high solar absorption efficiency of 96.7%, good photothermal effect and superhydrophilicity. Especially, when CFM@PDA is hanging between two water tanks (one contains seawater and the other is empty) in a flat hanging-model evaporator, it can transport seawater at a high rate (26.35 g/h) which is 3.6 times that (7.28 g/h) of commercial cotton fabric. Under simulated sunlight (1.0 kW m−2) irradiation, CFM@PDA shows a high evaporation rate of 1.79 kg m−2 h−1 with a solar evaporation efficiency of 92.6%. Even if NaCl solution with a high concentration (21.0 wt%) is used for the evaporation, the hanging CFM@PDA can retain a high evaporation rate (~ 1.80 kg m−2 h−1) without salt accumulation during the long-time test (8 h), which is significantly better than that of the tradition floating model. Therefore, this study not only demonstrates the simple preparation of superhydrophilic CFM@PDA, but also promotes the further practical applications of hanging-model evaporators for continuous salt-free desalination.Graphical Abstract[graphic not available: see fulltext]

Journal

Advanced Fiber MaterialsSpringer Journals

Published: Jun 1, 2023

Keywords: Carbon fiber membrane; Polydopamine; Superhydrophilicity; Hanging-model evaporator; Solar-driven seawater desalination

References