Access the full text.
Sign up today, get DeepDyve free for 14 days.
J. Figueroa-O’Farrill (2008)
A geometric construction of the exceptional Lie algebras FCommun. Math. Phys., 283
P. Baguis, T. Stavracou (2002)
NORMAL LIE SUBSUPERGROUPS AND NON-ABELIAN SUPERCIRCLESInternational Journal of Mathematics and Mathematical Sciences, 30
P. Freund (1986)
Introduction to Supersymmetry: Supergravities: locally supersymmetric theories
A. Galaev (2007)
Holonomy of supermanifoldsAbhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 79
A.S. Galaev (2009)
Holonomy of supermanifoldsAbh. Math. Semin. Univ. Hambg., 79
E-mail : santi@math.unifi
V.G. Kac (1977)
Lie superalgebrasAdv. Math., 26
Oliver Goertsches (2006)
Riemannian supergeometryMathematische Zeitschrift, 260
P. Deligné (1999)
Quantum Fields and Strings: A Course for Mathematicians
M. Scheunert (1979)
The Theory of Lie Superalgebras: An Introduction
J. Figueroa-O’Farrill (2008)
The homogeneity conjecture for supergravity backgroundsarXiv: High Energy Physics - Theory, 175
S. Kobayashi, K. Nomizu (1969)
Foundations of Differential Geometry, vol. I
J. Figueroa-O’Farrill (2007)
A Geometric Construction of the Exceptional Lie Algebras F4 and E8Communications in Mathematical Physics, 283
J. Figueroa-O’Farrill (2007)
Lorentzian symmetric spaces in supergravityarXiv: Differential Geometry
M.E. Sweedler (1969)
Hopf Algebras
of Mathematics University of Florence Viale Morgagni 67/a Florence 50134 Italy Phone +390554237111 Fax +390554222695
A. Grothendieck (1952)
Résumé des résultats essentiels dans la théorie des produits tensoriels topologiques et des espaces nucléairesAnnales de l'Institut Fourier, 4
C. Boyer, O. Sánchez-Valenzuela (1991)
Lie supergroup actions on supermanifoldsTransactions of the American Mathematical Society, 323
C. Bär (1992)
The Dirac operator on homogeneous spaces and its spectrum on 3-dimensional lens spacesArch. Math. (Basel), 59
D. Alekseevsky, Vicente Cortés, Chandrashekar Devchand, Antoine Proeyen (2003)
Polyvector Super-Poincaré AlgebrasCommunications in Mathematical Physics, 253
P. Deligné, J. Morgan (1999)
Notes on supersymmetry (following Joseph Bernstein)
C. Bartocci, U. Bruzzo, Daniel Hernández-Ruipérez (1991)
The geometry of supermanifolds
(1969)
Nomizu Foundations of differential geometry, Vol I, Interscience Publishers
J. Wess, B. Zumino (1974)
Supergauge transformations in four dimensionsNucl. Phys. B, 70
R. Fioresi, M. Lledó, V. Varadarajan (2006)
The Minkowski and Conformal SuperspacesJournal of Mathematical Physics, 48
V. Cortés (1999)
A New Construction of Homogeneous Quaternionic Manifolds and Related Geometric Structures
D. Leites (1980)
Introduction to the Theory of SupermanifoldsRussian Mathematical Surveys, 35
P. Freund (1989)
Introduction to Supersymmetry
Marjorie Batchelor (1979)
The structure of supermanifoldsTransactions of the American Mathematical Society, 253
B. Kostant (1977)
Lect. Notes in Math.
Yvette Kosmann (1971)
Dérivées de Lie des spineursAnnali di Matematica Pura ed Applicata, 91
F. Klinker (2005)
Supersymmetric Killing StructuresCommunications in Mathematical Physics, 255
D. Alekseevsky, V. Cortés, Chandrashekar Devchand, Uwe Semmelmann (1997)
Killing spinors are killing vector fields in Riemannian supergeometryJournal of Geometry and Physics, 26
J. Cariñena, H. Figueroa (1997)
Hamiltonian versus Lagrangian formulations of supermechanicsJournal of Physics A, 30
H. Lawson, M.-L. Michelsohn (1989)
Spin Geometry
P.K. Townsend (1999)
Novelties in String Theory
D. Radford (1986)
Divided power structures on Hopf algebras and embedding Lie algebras into special-derivation algebrasJournal of Algebra, 98
E. Petracci (2003)
Universal representations of Lie algebras by coderivationsBulletin Des Sciences Mathematiques, 127
V. Varadarajan (2004)
Supersymmetry for Mathematicians: An Introduction
M. Hatsuda, K. Kamimura, M. Sakaguchi (2002)
Super pp-wave algebra from super AdS�S algebras in eleven dimensionsNucl. Phys. B, 637
S. Chiossi (2008)
MR2436238 (2009m:53056) review of paper Witt, Frederik. Metric bundles of split signature and type II supergravity. Recent developments in pseudo-Riemannian geometry, 455--494, ESI Lect. Math. Phys., Eur. Math. Soc., Zürich, 2008
Jos, F. Cari, H. Figueroa (1997)
Hamiltonian versus Lagrangian Formulations of Supermechanics
J. Figueroa-O’Farrill, G. Papadopoulos (2001)
Homogeneous fluxes, branes and a maximally supersymmetric solution of M-theoryJournal of High Energy Physics, 2001
P. Townsend (1999)
Killing spinors, supersymmetries and rotating intersecting branesarXiv: High Energy Physics - Theory
J. Figueroa-O’Farrill (1999)
On the supersymmetries of anti-de Sitter vacuaClass. Quantum Gravity, 16
(2008)
Math. Z
B. Kostant (1977)
Graded manifolds, graded Lie theory, and prequantizationLecture Notes in Mathematics, 570
M. Hatsuda, K. Kamimura, M. Sakaguchi (2002)
Super-pp-wave algebra from super-AdS×S algebras in eleven dimensionsNuclear Physics, 637
Shôshichi Kobayashi, K. Nomizu (1963)
Foundations of Differential Geometry
J. Monterde, O. Sánchez-Valenzuela (1996)
The exterior derivative as a Killing vector fieldIsrael Journal of Mathematics, 93
M. Scheunert (1979)
The Theory of Lie Superalgebras
J. Figueroa-O'Farrill (1999)
On the supersymmetries of anti de Sitter vacuaarXiv: High Energy Physics - Theory
D. Alekseevsky, V. Cort'es (1995)
Classification of N-(Super)-Extended Poincaré Algebras and Bilinear Invariants of the Spinor Representation of Spin (p,q)Communications in Mathematical Physics, 183
J. Wess, B. Zumino (1974)
Supergauge Transformations in Four-DimensionsNuclear Physics, 70
F. Klinker (2007)
SUSY structures on deformed supermanifoldsDifferential Geometry and Its Applications, 26
Christian Bär (1992)
The Dirac operator on homogeneous spaces and its spectrum on 3-dimensional lens spacesArchiv der Mathematik, 59
M. Duflo, E. Petracci (2007)
Symmetric pairs and Gorelik elementsJournal of Algebra, 313
T. Friedrich (2000)
Dirac Operators in Riemannian Geometry
J. Figueroa-O’Farrill (2008)
Recent Developments in Pseudo-Riemannian Geometry
E. Cremmer, B. Julia, J. Scherk (1978)
Supergravity in theory in 11 dimensionsPhysics Letters B, 76
Let M 0=G 0/H be a (pseudo)-Riemannian homogeneous spin manifold, with reductive decomposition $\mathfrak {g}_{0}=\mathfrak {h}+\mathfrak {m}$ and let S(M 0) be the spin bundle defined by the spin representation $\tilde{ \operatorname {Ad}}:H\rightarrow \mathrm {GL}_{\mathbb {R}}(S)$ of the stabilizer H. This article studies the superizations of M 0, i.e. its extensions to a homogeneous supermanifold M=G/H whose sheaf of superfunctions is isomorphic to the sheaf of sections of Λ(S *(M 0)). Here G is the Lie supergroup associated with a certain extension of the Lie algebra of symmetry $\mathfrak {g}_{0}$ to an algebra of supersymmetry $\mathfrak {g}=\mathfrak {g}_{\overline {0}}+\mathfrak {g}_{\overline {1}}=\mathfrak {g}_{0}+S$ via the Kostant-Koszul construction. Each algebra of supersymmetry naturally determines a flat connection $\nabla^{\mathcal {S}}$ in the spin bundle S(M 0). Killing vectors together with generalized Killing spinors (i.e. $\nabla^{\mathcal {S}}$ -parallel spinors) are interpreted as the values of appropriate geometric symmetries of M, namely even and odd Killing fields. An explicit formula for the Killing representation of the algebra of supersymmetry is obtained, generalizing some results of Koszul. The generalized spin connection $\nabla^{\mathcal {S}}$ defines a superconnection on M, via the super-version of a theorem of Wang.
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg – Springer Journals
Published: Oct 24, 2009
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.