Get 20M+ Full-Text Papers For Less Than $1.50/day. Subscribe now for You or Your Team.

Learn More →

Suprachiasmatic nucleus organization

Suprachiasmatic nucleus organization The suprachiasmatic nucleus (SCN) of the hypothalamus is a dominant circadian pacemaker in the mammalian brain controlling the rest-activity cycle and a series of physiological and endocrine functions to provide a foundation for the successful elaboration of adaptive sleep and waking behavior. The SCN is anatomically and functionally organized into two subdivisions: (1) a core that lies adjacent to the optic chiasm, comprises predominantly neurons producing vasoactive intestinal polypeptide (VIP) or gastrin-releasing peptide (GRP) colocalized with GABA and receives dense visual and midbrain raphe afferents, and (2) a shell that surrounds the core, contains a large population of arginine vasopressin (AVP)-producing neurons in its dorsomedial portion, and a smaller population of calretinin (CAR)-producing neurons dorsally and laterally, colocalized with GABA, and receives input from non-visual cortical and subcortical regions. In this paper, we present a detailed quantitative analysis of the organization of the SCN core and shell in the rat and place this in the context of the functional significance of the subdivisions in the circadian control of regulatory systems. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Cell and Tissue Research Springer Journals

Suprachiasmatic nucleus organization

Cell and Tissue Research , Volume 309 (1) – Jan 24, 2014

Loading next page...
 
/lp/springer-journals/suprachiasmatic-nucleus-organization-SW2HB7zLIq

References (50)

Publisher
Springer Journals
Copyright
Copyright © 2002 by Springer-Verlag
Subject
Biomedicine; Human Genetics; Proteomics; Molecular Medicine
ISSN
0302-766X
eISSN
1432-0878
DOI
10.1007/s00441-002-0575-2
pmid
12111539
Publisher site
See Article on Publisher Site

Abstract

The suprachiasmatic nucleus (SCN) of the hypothalamus is a dominant circadian pacemaker in the mammalian brain controlling the rest-activity cycle and a series of physiological and endocrine functions to provide a foundation for the successful elaboration of adaptive sleep and waking behavior. The SCN is anatomically and functionally organized into two subdivisions: (1) a core that lies adjacent to the optic chiasm, comprises predominantly neurons producing vasoactive intestinal polypeptide (VIP) or gastrin-releasing peptide (GRP) colocalized with GABA and receives dense visual and midbrain raphe afferents, and (2) a shell that surrounds the core, contains a large population of arginine vasopressin (AVP)-producing neurons in its dorsomedial portion, and a smaller population of calretinin (CAR)-producing neurons dorsally and laterally, colocalized with GABA, and receives input from non-visual cortical and subcortical regions. In this paper, we present a detailed quantitative analysis of the organization of the SCN core and shell in the rat and place this in the context of the functional significance of the subdivisions in the circadian control of regulatory systems.

Journal

Cell and Tissue ResearchSpringer Journals

Published: Jan 24, 2014

There are no references for this article.